
Christian K. Ingwersen et. al - cin@trackman.com

Segmentation of 3D shapes has recently been a hot topic within deep learning and several approaches to how
to solve it has been presented. When working with shape data computational efficiency is often a strict
requirement due to the hugely increased complexity compared to simple images. We present a new
computationally efficient extension of MeshCNN architecture which allows the architecture to be used on large
meshes, which is usually required in a production setting.

Figure 1: Illustration of the MeshCNN pooling and unpooling operation, where the edge with
the minimum activation is being collapsed.

Introduction
We present an extension of MeshCNN which introduces a way to do convolutions, pooling, and unpooling of meshes. Our contribution
to the architecture is a sparse reimplementation of the pooling operation that further allows it to pool edges in batches instead of
sequentially.

Acknowledgements
This poster presents the work of Mathias Lowes¹, Bjørn Hansen¹, Anders Dahl¹, Vedrana
Dahl¹, Ole de Backer³, Oscar Camara². Rasmus Paulsen¹, Christian Ingwersen¹ ⁴ and Kristine
Sørensen¹

 ¹Visual Computing, Technical University of Denmark:
-------s183983,s183986,abda,vand,rapa,ckin,kajul@dtu.dk
²Universitat Pompeu Fabra, Spain: oscar.camara@upf.edu
³Rigshopitalet, Denmark: ole.de.backer@regionh.dk
⁴TrackMan A/S, Denmark: cin@trackman.com

Data

Results

SparseMeshCNN with Self-Attention for
Segmentation of Large Meshes

Convolutions and Pooling on meshes
As meshes are not ordered in a regular grid-like 2D images we
cannot apply a traditional convolutional operation on the mesh. In
MeshCNN features for each edge are instead defined as the two
inner angles, edge-length ratios and the dihedral angle. These
features are then used to generate an image like structure of
dimension, b x c x e x n+1.

In order to keep track of the collapsed edges we use a matrix G of
size (Np x Nq), where each entry Gi, j denotes if edge j has been
collapsed into edge i. For large meshes, this is a very sparse
matrix, and we thus implemented it as such. We also modified the
pooling operation to make it be done in bulk, rather than
iteratively, as was the original implementation made by the author.

Figure 2: Illustration of the MeshCNN pooling operation where the source edges, s, are
collapsed into the target edges, t. In the matrix G row 4 it is seen why the pooling operation
cannot be fully vectorised. We instead present a batch operation which makes the operation
more efficient.

Figure 3: Left Illustration of the heart with the left atrial appendage marked. Right Our
training data i.e. the left atrium cropped out with the left atrial appendage segmented.

Model

Figure 4: Distribution of number of vertices in the meshes from the training split.

Figure 5: The used model architecture for the model with attention. The other models are
based on similar U-net structure. Ideally we would have the attention block before the first
pooling but due to memory constraints it is not possible on a consumer grade GPU.

Figure 6: Results on the meshes with best, 75th percentile and worst segmentation results
evaluated by Dice-score. It can be seen that the models with larger receptive field or attention
manages to only segment the LAA without any post processing.

