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Segmentation of 3D shapes has recently been a hot topic within deep learning and several approaches to how 
to solve it has been presented. When working with shape data computational efficiency is often a strict 
requirement due to the hugely increased complexity compared to simple images. We present a new 
computationally efficient extension of MeshCNN architecture which allows the architecture to be used on large 
meshes, which is usually required in a production setting.

 

Figure 1: Illustration of the MeshCNN pooling and unpooling operation, where the edge with 
the minimum activation is being collapsed.

Introduction
We present an extension of MeshCNN which introduces a way to do convolutions, pooling, and unpooling of meshes. Our contribution 
to the architecture is a sparse reimplementation of the pooling operation that further allows it to pool edges in batches instead of 
sequentially. 
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SparseMeshCNN with Self-Attention for 
Segmentation of Large Meshes

Convolutions and Pooling on meshes
As meshes are not ordered in a regular grid-like 2D images we 
cannot apply a traditional convolutional operation on the mesh. In 
MeshCNN features for each edge are instead defined as the two 
inner angles, edge-length ratios and the dihedral angle. These 
features are then used to generate an image like structure of 
dimension, b x c x e x n+1. 

In order to keep track of the collapsed edges we use a matrix G of 
size (Np x Nq), where each entry Gi, j denotes if edge j has been 
collapsed into edge i. For large meshes, this is a very sparse 
matrix, and we thus implemented it as such. We also modified the 
pooling operation to make it be done in bulk, rather than 
iteratively, as was the original implementation made by the author.

Figure 2: Illustration of the MeshCNN pooling operation where the source edges, s, are 
collapsed into the target edges, t. In the matrix G row 4 it is seen why the pooling operation 
cannot be fully vectorised. We instead present a batch operation which makes the operation 
more efficient.

Figure 3: Left Illustration of the heart with the left atrial appendage marked. Right Our 
training data i.e. the left atrium cropped out with the left atrial appendage segmented. 

Model

Figure 4: Distribution of number of vertices in the meshes from the training split.

Figure 5: The used model architecture for the model with attention. The other models are 
based on similar U-net structure. Ideally we would have the attention block before the first 
pooling but due to memory constraints it is not possible on a consumer grade GPU.

Figure 6: Results on the meshes with best, 75th percentile and worst segmentation results 
evaluated by Dice-score. It can be seen that the models with larger receptive field or attention 
manages to only segment the LAA without any post processing.


