L. : 5's"s FORCE
LIOS S XX

Faster Multi-Object Segmentation using Parallel
Quadratic Pseudo-Boolean Optimization

Niels Jeppesen, Patrick M. Jensen, Anders N. Christensen, Anders B. Dahl, and Vedrana A. Dahl
Visual Computing, DTU Compute. Technical University of Denmark, Kongens Lyngby, Denmark - {niejep,patmjen,anym,abda,vand}@dtu.dk

Summary Speed-up Results

In this paper we:

* |Introduce a parallel algorithm for solving quadratic pseudo-Boolean We apply our algorithm to two "
optimization (QPBO) problems. different tasks:

 Demonstrate an 11x and 19x speed-up for large problems and ~3x for 1. Nerves (N1, N2): segment ﬁi
small problems. nerves from a large 3D pCT image. i

 Demonstrate our method outperforms current state of the art algorithms 2. Broad Bioimage Benchmark 31
by a large margin. (BBB): segment cells from many

We focus on image segmentation, but our algorithm can solve any QPBO small 2D images.

problem. Our implementation Is available at: github.com/Skielex/shrdr

All tests are run on a dual socket
M et h O d machine with two 16 core Intel Xeon
6226R CPUs and enough RAM to

. keep all data loaded in memory. Broad Bioimage
Graph Construction P Y Benchmark

Given a quadratic pseudo-Boolean energy function
E(x) = Z 0,(xp) + Z Opq(Tp, Tq) Results on Nerves (Large Problem)
pcV P,qeV
| 2 1o N1 N1 N2
a graph is constructed as follows E 10_: ----------- Nodes 364 M 818 M
.}i‘ ./{’. :g. PP PP A p D 2 8 - I\KA‘_%F;BB% Edges 2,124 M 4,864 M
s fs 5@ I I o/ 5@ I I ®/ 5@ o/ 5@ o/ a ©7 —— P-QPBO Memory footprint
v 4 - —==Amdahl's law fit (p=0.88)
;G ;g i g ;g ;g ;g E T K-QPBO 1342 GB 306.8 GB
0,(0) (1) 00(01) 6y(1,0) 6,4(0.0) By (L 1) P A N S
. . . o . . Number of threads P'QPBO 700 GB 2249 GB
Min-cut/max-flow of this graph gives the minimizer of the energy function. Fastest solve time
5 NZ K-QPBO 844s 4,534s
Sarallel OPRO Algorith ET = /= M-QPBO 638s 3,897 s
arallel Q goritnm 515 - ;_—%FI:EI;CC)) P_QPBO (1) 561 S 2.338 s
We combine the original QPBO algorithm with the block-based 3 10- —— P-QPBO P-QPBO (16) 96 s 305 s
parallelization approach by Liu and Sun. The algorithm has two phases: g, T AmdeE EwRTR2Y pLQPBO (32) 83 s 264 s
A. Split the p_roblem Into disjoint blocks and solve _each block In parallel. % o e s ees| P-QPBO (40) 76 S 249 s
B. Merge pairs of blocks and re-solve. Repeat until all blocks are merged. 24 8 1624 32 40 4856 64 5 ppQ (56) 79 g 230 s
During both phases, graph arcs for non-submodular terms are only added

when needed. This is key to our algorithm’s performance.

2
v\‘ *~g < H”*-U C 3 6 3 6
1 [O [£ | --- karBoO [8 % E | --- kapBO [8 g
"'D D E:, ,:'D‘\ _ E‘,"‘r %4- i %4 _ i
---------- o) O | & O —
W ““““ A V ~~~~ A BT = S N O - == e |
Phase A = | E | |
) 0))))) AN 0))))))
A B 3 A B 4 e o P \:; o°%° \:; o*%° \: o°%° \i o f,o?%o o W o P \:: % (:; % \z i \i %" :?Q?%O o
.
7. DB I: iy DrE ﬁ Performance Comparison
@ @ We compare our algorithm with: *Tested with up to 32 threads.
* Liu-Sun: parallel min-cut/max- N1 Mem. Best speed-up
flow solver. N1 BBB
+ EIBFS: state of the art serial min- M-QPBO 60.1GB 1.32 1.72+0.28
cut/max-flow solver. P-QPBO (32) 70.0GB 10.17 2.96%0.89
+ P-EIBFS: parallelized version of Lu-Sun(32) ~ 70.0GB 4.42 0.780.13
FIBES. EIBFS 175.1GB 0.92 0.33+0.08
. EIBFS-OPBO: estimate of OpBO P-EIBFS (32) 1758 GB 0.59 0.68:0.14
Shace B with EIBES. EIBFS-QPBO 175.1 GB 1.83 0.66+0.08

