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Content
Part I: Introduction to group convolutions 
* Motivation

* Introduction to group theory

* Regular group convolutional neural networks

* Applications


Part II: General theory for group equivariant deep learning 
* Group convolutions are all you need!

* Deeper into group theory: representation theory, homogeneous spaces

* Characterization of types of group equivariant layers


Part III: Steerable group convolutions 
* Deep dive into group theory: irreducible representations, steerable operators and vector spaces

* Examples of steerable group convolutions: Spherical data and Volumetric data/3D point clouds
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Lecture notes, slides and exercises available at


https://uvagedl.github.io 

https://uvagedl.github.io


Part I

1. Why do we want equivariant learning models?

   - Geometric guarantees + weight sharing/sample efficiency


2. A group theoretical view on recognition by components (capsule nets)

   - Group theoretical prerequisites (group product and representations)

   - Group convolutions perform pattern recognition by components


3. Experimental examples
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Content of this talk

1. Why do we want equivariant learning models?

   - Geometric guarantees + weight sharing/sample efficiency


2. A group theoretical view on recognition by components (capsule nets)

   - Group theoretical prerequisites (group product and representations)

   - Group convolutions perform pattern recognition by components


3. Experimental examples


4. Theorem: Linear maps between feature maps are equivariant iff they are group convolutions
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Pathological

(invariance)
Why Group Convolutional Neural Networks (G-CNNs)?

Common approach: data-augmentation Issues:

- Still no guarantee of invariance

..

- Valuable net capacity is spend on 
learning invariance


- Redundancy in feature repr.

Example: Detection of  
pathological cells

Solution: G-CNNs!
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Why Group Convolutional Neural Networks (G-CNNs)?

(equivariance)

G-CNNs are not only relevant for invariant 
problems but for any type of structured data!

Importance of equivariance:


- No information is lost when the input is transformed


- Guaranteed stability to (local + global) transformations

Group convolutions:


- Equivariance beyond translations


- Geometric guarantees


- Increased weight sharing



Motivation: Recognition by components
In a group theoretical setting

10



Motivation: Recognition by components
In a group theoretical setting

10

Fig from Kosiorek et al. 2019

Rationale behind capsule networks
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3. Experimental examples
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What is a group?

A group  is a set of elements  equipped with a group product , a binary 
operator, that satisfies the following four axioms:


• Closure: Given two elements  and  of , the product  is also in .


• Associativity: For  the product  is associative, i.e., .


• Identity element: There exists an identity element  such that  for any .


• Inverse element: For each  there exists an inverse element  s.t. .

(G, ⋅ ) G ⋅

g h G g ⋅ h G

g, h, i ∈ G ⋅ g ⋅ (h ⋅ i) = (g ⋅ h) ⋅ i

e ∈ G e ⋅ g = g ⋅ e = g g ∈ G

g ∈ G g−1 ∈ G g−1 ⋅ g = g ⋅ g−1 = e

12



The translation group (ℝ2, + )
The translation group consists of all possible translations in  and is equipped with the group 
product and group inverse:


   
 


with  and .

ℝ2

g ⋅ g′￼ = (x + x′￼)
g−1 = (−x)

g = (x), g′￼ = (x′￼) x, x′￼ ∈ ℝ2

13

translate by g
translate by g′￼

translate by g ⋅ g′￼



The roto-translation group SE(2)
The group    consists of the coupled space  of translations vectors 
in , and rotations in  (or equivalently orientations in ), and is equipped with the group 
product and group inverse:


   
                                . 


with .

SE(2) = ℝ2 ⋊ SO(2) ℝ2 × S1

ℝ2 SO(2) S1

g ⋅ g′￼ = (x, Rθ) ⋅ (x′￼, Rθ′￼
) = (Rθx′￼+x, Rθ+θ′￼

)
g−1 = (−R−1

θ x, R−1
θ )

g = (x, Rθ), g′￼ = (x′￼, Rθ′￼
)
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2D Special Euclidean motion group

roto-translate by g roto-translate by g′￼

roto-translate by g ⋅ g′￼



The scale-translation group ℝ2 ⋊ ℝ+

The scale-translation group of space  of translations vectors in  and scale/dilation 
factors in , and is equipped with the group product and group inverse:

                                            
                                                                             . 


with .

ℝ2 × ℝ+ ℝ2

ℝ+

g ⋅ g′￼ = (x, s) ⋅ (x′￼, s′￼) = (sx′￼+ x, ss′￼)
g−1 = (− 1

s x, 1
s )

g = (x, s), g′￼ = (x′￼, s′￼)
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translate and scale by g translate and scale by g′￼

translate and scale by g ⋅ g′￼

with g ⋅ g−1 = e = (0,1)

G = (Is x
0T 1)matrix repr:
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The roto-translation group SE(2)
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2D Special Euclidean motion group

multiply each element with  
(using group prod)

g
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Set of points (group elements) Convolution kernel

{g1, g2, …} ⊂ G = (ℝ2, + ) k ∈ 𝕃2(ℝ2)
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Representations
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A linear operator  that is parameterized by group elements  that 
transforms some object  (e.g. an image) is called a representation of  if it caries 
the group structure in the following way


ℒg g ∈ G
f G
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Left-regular representations
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ℒg
ℒg′￼

ℒg′￼⋅g

The left-regular representation of  transforms functions by acting on the domain 
on which they are defined via


G

ℒg( f )(y) = f(g−1 ⊙ y)

Example:


 
          - a 2D image


 
          - the roto-translation group


  
          - a roto-translation of the image

f ∈ 𝕃2(ℝ2)

G = SE(2)

ℒg( f )(y) = f(R−1
θ (y − x))

“group action” equals 
group product when 
X = G



Group actions
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Group product (the action on )


Left regular representation (the action on )


Group action (the action on )

G

𝕃2(X)

ℝd

x ∈ ℝ2

g ⊙ x

g ⋅ g′￼

ℒg f

g ⊙ x
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Group action (the action on )

G

𝕃2(X)

ℝd

x ∈ ℝ2

g ⊙ x

g ⋅ g′￼

ℒg f

g ⊙ x

gg′￼

gf

gx
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Φ

Φ

ρX(g) ρY(g)

ρY(g) ∘ Φ = Φ ∘ ρX(g)

Equivariance

 and actions of  on  and ρX ρY G X Y
Φ : X → Y
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Are convolutions with reflected conv kernels (and vice versa)

(k ⋆ℝ2 f )(x) = ∫ℝ2

k(x′￼− x)f(x′￼)dx′￼ = (ℒg k , f )𝕃2(ℝ2)

Representation of the translation group!

 
2D convolution kernel

k  
2D feature map

f in  
2D feature map (after ReLU)

f out

⋆ℝ2 =



Group equivariance
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Φ

Φ

ℒℝ2→𝕃2(ℝ2)
(x) ℒℝ2→𝕃2(ℝ2)

(x)

Representation of the 
translation group

(k ⋆ℝ2 f )(x) = (ℒℝ2→𝕃2(ℝ2)
(x) k , f )𝕃2(ℝ2)

Convolutions/cross-correlations are translation equivariant



Group equivariance
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Φ

Φ

ℒSO(2)→𝕃2(ℝ2)
θ

Representation of the 
rotation group

(k ⋆ℝ2 f )(x) = (ℒℝ2→𝕃2(ℝ2)
(x) k , f )𝕃2(ℝ2)

Convolutions are generally not equivariant to roto-translations

ℒSO(2)→𝕃2(ℝ2)
g

Representation of the 
translation group
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SE(2) group lifting convolutions are roto-translation equivariant

planar rotation

periodic shift

planar rotation

Φ

Φ

ℒSO(2)→𝕃2(ℝ2)
θ

ℒSO(2)→𝕃2(SE(2))
θ

(k ⋆̃ f )(x) = (ℒR2→𝕃2(ℝ2)
x ℒSO(2)→𝕃2(ℝ2)

θ k , f )𝕃2(ℝ2)



Group equivariance

28

SE(2) group lifting convolutions are roto-translation equivariant

planar rotation

periodic shift

planar rotation

Φ

Φ

ℒSO(2)→𝕃2(ℝ2)
θ

ℒSO(2)→𝕃2(SE(2))
θ

(k ⋆̃ f )(x) = (ℒR2→𝕃2(ℝ2)
x ℒSO(2)→𝕃2(ℝ2)

θ k , f )𝕃2(ℝ2)



Group equivariance

28

SE(2) group lifting convolutions are roto-translation equivariant

planar rotation

periodic shift

planar rotation

Φ

Φ

ℒSO(2)→𝕃2(ℝ2)
θ

ℒSO(2)→𝕃2(SE(2))
θ

(k ⋆̃ f )(x) = (ℒR2→𝕃2(ℝ2)
x ℒSO(2)→𝕃2(ℝ2)

θ k , f )𝕃2(ℝ2)

What about 
subsequent layers?
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SE(2) group convolutions are roto-translation equivariant

Φ

Φ

ℒSO(2)→𝕃2(SE(2))
θ

(k ⋆ f )(x) = (ℒℝ2→𝕃2(SE(2))
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Φ

ℒℝ2→𝕃2(ℝ2)
g ℒℝ2→𝕃2(ℝ2)

g

Φ

plan
plan

Φ

ℒSO(2)→𝕃2(ℝ2)
θ

ℒSO(2)→𝕃2(SE(2))
θ

2D cross-correlation (translation equivariant)

SE(2) lifting correlations (roto-translation equivariant)

SE(2) G-correlations (roto-translation equivariant)

(k ⋆ℝ2 f )(x) = (ℒℝ2→𝕃2(ℝ2))
x k, f )𝕃2(ℝ2)

(k ⋆̃ f )(x) = (ℒSE(2)→𝕃2(ℝ2)
g k , f )𝕃2(ℝ2)

(k ⋆̃ f )(x) = (ℒSE(2)→𝕃2(SE(2))
g k , f )𝕃2(SE(2)

= ∫ℝ2 ∫S1

k(R−1
θ (x′￼− x), θ′￼− θ mod 2π)f(x′￼, θ′￼)dx′￼

= ∫ℝ2

k(x′￼− x)f(x′￼)dx′￼

= ∫ℝ2

k(R−1
θ (x′￼− x))f(x′￼)dx′￼

Φ

Φ

ℒSO(2)→𝕃2(SE(2))
θℒSO(2)→𝕃2(SE(2))

θ
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outperform 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G-CNNs guarantee 
geometric stability. 
They are robust to 
input distortions, 
regular CNNs aren’t…

Bekkers & Lafarge et al. MICCAI 2018 Lafarge et al. MedIA 2020

G-CNNs are more sample efficient! 
G-CNNs (25% data) > CNNs (100% data)

10%

50%
25%

100%

75%

Lafarge et al. ArXiv/MedIA 2020



Experiments in medical image analysis
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From rotation to scale equivariant CNNs
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Bekkers ICLR 2020

Translation +                              G-CNNs

2D CNN

scale equivariant

2D CNN with 
rescaled input
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• Performance gains that can’t be obtained by data-augmentation alone 
(both local and global equivariance/invariance)


• Increased sample efficiency  
(increased weight sharing, no geometric augmentation necessary)
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Wavelet Networks: Scale Equivariant Learning 
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Brandstetter, Hesselink, van der Pol, Bekkers, Welling  Steerable Equivariant 
Message Passing on Molecular Graphs  - in review
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G-CNNs are NNs under 
equivariance constraints

Part II:  
A linear map is equivariant 


if and only if it is agroup convolution



Content
Part I: Introduction to group convolutions 
* Motivation

* Introduction to group theory

* Regular group convolutional neural networks

* Applications


Part II: General theory for group equivariant deep learning 
* Group convolutions are all you need!

* Deeper into group theory: representation theory, homogeneous spaces

* Characterization of types of group equivariant layers


Part III: Steerable group convolutions 
* Deep dive into group theory: irreducible representations, steerable operators and vector spaces

* Examples of steerable group convolutions: Spherical data and Volumetric data/3D point clouds
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x0 ∈ 𝒳 = 𝕃2(ℝ2)Image analyst:

x0 ∈ 𝒳 = ℝ784Naive deep learner:
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Iteratively transform the vector via

xl = φ(Kwl
xl−1 + bl)

Linear map: matrix-vector multiplication with Kwl
∈ ℝNl×Nl−1



Iteratively transform the vector in  viaℝNx

y = φ(K x + bl)

Linear map: matrix-vector multiplication with 
K ∈ ℝNy×Nx

yj = ∑
i

Ki,j xi

mitotic  
figure

Iteratively transform the feature map in 𝕃2(X)

f out = φ(K f in + bl)

Linear map: kernel operator with kernel in  
𝕃1(Y, X)

(Kf )(y) = ∫X
k(y, x)f(x)dx

Working with vectors x ∈ 𝒳 = ℝNx
Working with feature maps f ∈ 𝒳 = 𝕃2(X)

Classical artificial NNs in the continuous world
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We want  to be equivariant!K



mitotic  
figure

Let’s build neural networks for signal 
data via the layers of the form:

f l+1 = σ(𝓚 f l + bl)

Neural Networks for Signal Data

47

𝓚 : 𝕃2(X)Nl → 𝕃2(Y)Nl+1

The linear map has to be an integral 
transform with a two-argument kernel 
(Dunford-Pettis theorem)

(𝓚f )(y) = ∫X
k(y, x)f(x)dx



Theorem 3.2: 
Let  map between signals on homogeneous spaces of . 


Let homogeneous space  such that  for some chosen 
origin  and let  such that .


Then  is equivariant to group  if and only if: 


             1. It is a group convolution: 


             2. The kernel satisfies a symmetry constraint:    

𝒦 : 𝕃2(X) → 𝕃2(Y) G

Y ≡ G/H H = StabG(y0)
y0 ∈ Y gy ∈ G ∀y∈Y : y = gyy0

𝒦 G

[𝒦f ](y) = ∫X
k(g−1

y x)f(x)dx

∀h∈H : k(hx) = k(x)
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Group theory: Homogeneous spaces

50

Group action: An operator  such that


 

⊙ : G × X → X

∀g,g′￼∈G,x∈X : g ⊙ (g′￼⊙ x) = (gg′￼) ⊙ x

x

g′￼⊙ x
g ⊙ (g′￼⊙ x)

(gg′￼) ⊙ x



Group theory: Homogeneous spaces

51

Transitive action: An action  such that


 

⊙ : G × X → X

∀x0,x∈X ∃g∈G : x = g ⊙ x0

 acts transitively on (ℝ2, + ) ℝ2 SE(2) acts transitively on ℝ2 SO(2) does not …
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Group theory: Homogeneous spaces

52

Homogeneous space: A space on  on which  acts transitively.X G

This is important as then we can guarantee that every part of 
the signal can be “seen” (probed by the convolution kernel)
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Group theory: Homogeneous spaces
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The sphere  is a homogeneous space of 3D rotations S2 SO(3)
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Group theory: Quotient spaces

54

Quotient space : The space of unique cosets . Elements 
of the space  are cosets.

G/H gH = {gh |h ∈ H}
G/H

g
gh

gh

gH = {gh |h ∈ H}



Group theory: Stabilizer

55

Stabilizer:   is a subset of  that leaves  unchanged. I.e., StabG(x0) G x0
StabG(x0) = {g |gx0 = x0}

So the sphere is a quotient space


 


with


 

S2 ≡ SO(3)/H

H = StabG(ex)



Group theory: Homogeneous space  Quotient space≡

56

Lemma 2.1: Any quotient space is a homogeneous space

Lemma 2.2: Any homogeneous space is a quotient space



Group theory: Quotient spaces

57

Lecture notes  
Section 2.3



Lecture notes
Theorem 3.2: 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( )  
    Isotropic/Constraint convolutions on spaces of lower     
    dimension than , 


( )  
    Lifting convolution. No constraints on .


( )  
    Group convolutions. No constraints on .


  
    Projection layer. Mean pooling over .


  
    Global pooling over .

X = Y = G/H

G ∀h∈H : k(hx) = k(x)

X = G/H, Y = G
k

X = Y = G
k

(X = G, Y = G/H)
H

(X = G, Y = ∅)
G

Types of layers
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The case of  equivariant layers 


for signals on 

SE(2)
ℝd ≡ SE(2)/SO(2)



62

Φ

ℒℝ2→𝕃2(ℝ2)
g ℒℝ2→𝕃2(ℝ2)

g

Φ

plan
plan

Φ

ℒSO(2)→𝕃2(ℝ2)
θ

ℒSO(2)→𝕃2(SE(2))
θ

2D cross-correlation (translation equivariant) - K : 𝕃2(ℝ2) → 𝕃2(ℝ2)

SE(2) lifting correlations - K : 𝕃2(ℝ2) → 𝕃2(SE(2))

(k ⋆ℝ2 f )(x) = (ℒℝ2→𝕃2(ℝ2))
x k, f )𝕃2(ℝ2)

(k ⋆̃ f )(x) = (ℒSE(2)→𝕃2(ℝ2)
g k , f )𝕃2(ℝ2)

(k ⋆̃ f )(x) = (ℒSE(2)→𝕃2(SE(2))
g k , f )𝕃2(SE(2)

= ∫ℝ2 ∫S1

k(R−1
θ (x′￼− x), θ′￼− θ mod 2π)f(x′￼, θ′￼)dx′￼

= ∫ℝ2

k(x′￼− x)f(x′￼)dx′￼

= ∫ℝ2

k(R−1
θ (x′￼− x))f(x′￼)dx′￼

Φ

Φ

ℒSO(2)→𝕃2(SE(2))
θℒSO(2)→𝕃2(SE(2))

θ

SE(2) G-correlations - K : 𝕃2(SE(2)) → 𝕃2(SE(2))

SE(2) equivariance iff


 
 




since 

(ℒSO(2)→𝕃2(ℝ2)
θ k)(x) = k(x)

⇔
k(R−1

θ x) = k(x)

Y = ℝ2 ≡ SE(2)/SO(2)

No constraints

No constraints
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The most expressive group equivariant 

architectures are obtained by lifting 


the feature maps to the group



General group equivariant architecture
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Class probability
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Input image

    “normal” (0) 
vs 

    “mitotic” (1)

Rotation + translation equivariant

Max-pooling over rotations 
guarantees rotation invariance



Content
Part I: Introduction to group convolutions 
* Motivation

* Introduction to group theory

* Regular group convolutional neural networks

* Applications


Part II: General theory for group equivariant deep learning 
* Group convolutions are all you need!

* Deeper into group theory: representation theory, homogeneous spaces

* Characterization of types of group equivariant layers


Part III: Steerable group convolutions 
* Deep dive into group theory: irreducible representations, steerable operators and vector spaces

* Examples of steerable group convolutions: Spherical data and Volumetric data/3D point clouds
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The need for steerable G-CNNs

Steerable methods are designed for groups that involve the action of : 
• Are based on a Fourier convolution theorem on 

• Avoids discretization of :


•  Numerically more precise than regular group convolutions

•  Exact equivariance

•  Flexible to non-gridded data


•  Provide a roadmap to local equivariance on arbitrary manifolds  
 through Gauge theory

SO(d)
SO(d)

SO(d)
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Steerable methods for computational chemistry

67

Brandstetter, Hesselink, van der Pol, Bekkers, Welling  Steerable 
Equivariant Message Passing on Molecular Graphs 

Molecular property 
prediction
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Brandstetter, Hesselink, van der Pol, Bekkers, Welling  Steerable 
Equivariant Message Passing on Molecular Graphs 

Molecular property 
prediction



Steerable methods for computational chemistry
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Brandstetter, Hesselink, van der Pol, Bekkers, Welling  Steerable 
Equivariant Message Passing on Molecular Graphs 

Video: Open Catalyst Project



Steerable methods for computational chemistry
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Brandstetter, Hesselink, van der Pol, Bekkers, Welling  Steerable 
Equivariant Message Passing on Molecular Graphs 

Video: Open Catalyst Project



Steerable methods for computational chemistry

68

Brandstetter, Hesselink, van der Pol, Bekkers, Welling  Steerable 
Equivariant Message Passing on Molecular Graphs 

Video: Open Catalyst Project
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Group theoretical background

Irreducible Representations (spherical harmonics, Wigner-D matrices)

Fourier transform on SO(3)
Convolution theorem  
       + Clebsch-Gordan Tensor product

Steerable G-CNNs



Group theory: Irreducible Representations
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Group theory: Irreducible Representations
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Group theory: Wigner-D Matrices

71

Wigner-D matrices are the irreducible matrix representations of 


Every representation  of  is block diagonalizable to a 
representation with Wigner-D matrices along the diagonal:

SO(3)

D(g) SO(3)



Group theory: Steerable vector space
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Wigner-D matrices generalize the notion of a rotation 
matrix for the rotation of -dimensional vectors(2l + 1)



Group theory: Steerable vector space
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Group theory: Steerable vector space
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Group theory: Spherical Harmonics
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Spherical harmonics Y(l)
m : S2 → ℝ•Functions on the sphere


•Solutions to Laplace’s equation on 


•The  equivalent of the circular 
harmonics (1D Fourier basis)


•Form orthonormal basis for 


•Are Wigner-D functions:


      

S2

S2

𝕃2(S2)

Y(l)
m = D(l)

m0

Image: wikipedia



Group theory: Spherical Harmonics Form Steerable Vectors
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Group theory: Fourier Transform on S2
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Group theory: Fourier Transform on SO(3)
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Group theory:  Fourier TheoremsSO(3)
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Group theory:  Fourier TheoremsSO(3)
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Group theory: Clebsch-Gordan Tensor Product
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General tensor product between two vectors:



Group theory: Clebsch-Gordan Tensor Product

80

General tensor product between two vectors:



Group theory: Clebsch-Gordan Tensor Product

81

We want the tensor product to be equivariant via

for some D(g)



Group theory: Clebsch-Gordan Tensor Product
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The tensor product between two steerable vectors results 
again in a steerable vector:

The resulting representation is reducible.


The CG-product  is defined in such a way that the output is 
directly obtained in direct sum of steerable vector spaces

⊗cg

h̃1 ⊗cg h̃2 ∈ V0 ⊕ V1 ⊕ …



Group theory: Clebsch-Gordan Tensor Product
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General tensor product between two vectors:
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Steerable Neural Networks
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Steerable Neural Networks
Method 1: Convolutions in the Fourier domain     (  gconvs)SO(3)
Lecture notes Section 5.1

Method 2: Clebsch-Gordan tensor product          (  gconvs)SE(3)
Lecture notes Section 5.2
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Steerable Neural Networks
Method 1: Convolutions in the Fourier domain     (  gconvs)SO(3)
Lecture notes Section 5.1

Method 2: Clebsch-Gordan tensor product          (  gconvs)SE(3)
Lecture notes Section 5.2
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Steerable Neural Networks
Method 1: Convolutions in the Fourier domain     (  gconvs)SO(3)
Lecture notes Section 5.1

Method 2: Clebsch-Gordan tensor product          (  gconvs)SE(3)
Lecture notes Section 5.2

Figure from: https://github.com/daniilidis-group/
spherical-cnn 
 Esteves, C., Allen-Blanchette, C., Makadia, A., & 
Daniilidis, K. Learning SO(3) Equivariant 
Representations with Spherical CNNs. European 
Conference on Computer Vision, ECCV 2018

https://github.com/daniilidis-group/spherical-cnn
https://github.com/daniilidis-group/spherical-cnn
https://github.com/daniilidis-group/spherical-cnn
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Steerable Neural Networks
Method 1: Convolutions in the Fourier domain     (  gconvs)SO(3)
Lecture notes Section 5.1

Method 2: Clebsch-Gordan tensor product          (  gconvs)SE(3)
Lecture notes Section 5.2

Figure from: https://github.com/daniilidis-group/
spherical-cnn 
 Esteves, C., Allen-Blanchette, C., Makadia, A., & 
Daniilidis, K. Learning SO(3) Equivariant 
Representations with Spherical CNNs. European 
Conference on Computer Vision, ECCV 2018

https://github.com/daniilidis-group/spherical-cnn
https://github.com/daniilidis-group/spherical-cnn
https://github.com/daniilidis-group/spherical-cnn
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Spherical group convolutions in the Fourier domain

In vectorized form this is simply a matrix vector multiplication

Spherical CNNs are build via convolutions in the Fourier domain
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Spherical group convolutions in the Fourier domain

Let us make it explicit and consider signals with only frequency . 
Such signals are represented with -dimensional vectors.

l = 1
3

Spherical CNNs are build via convolutions in the Fourier domain
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Spherical group convolutions in the Fourier domain

Let us make it explicit and consider signals with only frequency . 
Such signals are represented with -dimensional vectors.

l = 1
3

Spherical CNNs are build via convolutions in the Fourier domain

For  signals: red=zeroS2
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Spherical group convolutions in the Fourier domain

Let us make it explicit and consider signals with only frequency . 
Then

l = 1

Spherical CNNs are build via convolutions in the Fourier domain

Only three weights: the kernel is also a spherical harmonic!
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Spherical group convolutions in the Fourier domain

Let us make it explicit and consider signals with only frequency . 
Then

l = 1

Spherical CNNs are build via convolutions in the Fourier domain

If we want the output to be a SH, only 1 weight can be non-zero!
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Spherical group convolutions in the Fourier domain

Figure from COORDINATE INDEPENDENT 
CONVOLUTIONAL NETWORKS, Weiler, 
Forré, Verlinde, Welling
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Steerable Neural Networks

Method 2: Clebsch-Gordan tensor product          (  gconvs)SE(3)
Lecture notes Section 5.2
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Steerable Neural Networks

Method 2: Clebsch-Gordan tensor product          (  gconvs)SE(3)
Lecture notes Section 5.2
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Steerable Neural Networks

Method 2: Clebsch-Gordan tensor product          (  gconvs)SE(3)
Lecture notes Section 5.2

Steerable group convolutions Regular group convolutions 

with

⇔
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Steerable Neural Networks

Method 2: Clebsch-Gordan tensor product          (  gconvs)SE(3)
Lecture notes Section 5.2

Steerable group convolutions Regular group convolutions 

Angular part of k
with

⇔
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Steerable Neural Networks

Method 2: Clebsch-Gordan tensor product          (  gconvs)SE(3)
Lecture notes Section 5.2

Steerable group convolutions Regular group convolutions 

Angular part of k Spatial part of k
with

⇔



95

Steerable Neural Networks

Steerable group convolutions Regular group convolutions 

with

Feature maps: f : ℝ3 → V0 ⊕ V1 ⊕ … Feature maps: f : ℝ3 × S2 → ℝ

Figures: https://github.com/QUVA-Lab/e2cnn 

⇔

https://github.com/QUVA-Lab/e2cnn
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Libraries and repositories

e2cnn: https://github.com/QUVA-Lab/e2cnn


e3nn: https://github.com/e3nn/e3nn


e3cnn (released soon)


https://github.com/QUVA-Lab/e2cnn
https://github.com/e3nn/e3nn


Conclusion
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Conclusion
• G-CNNs naturally arise from NNs under equivariance 

constraints

• G-CNNs improve upon classic CNNs by


• Making data augmentation w.r.t. the group obsolete

• No valuable network capacity needs to be spend 

on dealing w geometry

• The added geometric structure allows to deal with 

context (recognition by components, relative poses)

• The added geometric structure enables to reach 

performances that cannot be achieved with data 
augmentation alone


• Have guaranteed geometric stability

• Can be applied to many types of signal data (not 

covered today: equivariance to Lie groups and 
gauge equivariant methods
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