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Who is this aimed at?

B The ideal audience

P

Limited practical experience with geometrical deep learning
Has a good understanding of basic convolutional neural
networks

= Has seen the U-net before

Might come in a situation where your data is actually 3D
meshes or have been magicked into 3D meshes

Would like to do surface based classification or labelling /
segmentation

Lacks a good starting point
= Which approach is good for my data

DTU Compute, Technical University of Denmark



CJ When poll is active, respond at pollev.com/rasmuspaulse538

What is your experience with geometric

deep learning?

This is the first time | hear
about it

| have superficial knowledge
about the field

| have read several articels
about it

| have tested an existing
framework

| have adapted an existing
framework to my own data

| have coded my own framework

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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What's in it for me?

B You will (hopefully) get an overview of different
approaches to work with 3D meshes

B Some understanding of the strengths and
weaknesses of the different methods

- How invariant the methods are to geometric transformation
(translation, rotations etc)

- How large meshes can they process?
— What are the restriction with regards to geometry/topology
- How do they handle noise?

4 DTU Compute, Technical University of Denmark



CJ When poll is active, respond at pollev.com/rasmuspaulse538

What is my interest in the field?

| am here for the ECTS, the social
network and of general interest

| am working with data that might
benefit from geometric deep learning

| have a theoretical interest in the
field and would like to advance the
theory in the field

Something else

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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Surfaces — where do they come from?

Direct surface scanning using a
Canfield Vectra facial scanner.
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Object scanners
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An ear impression scanned by a The founder of DTU - H. C. @rsted
3Shape scanner.

Scanned by Dolores Messer with a custom

Probably one of the most scanned built structured light scanner at DTU Compute

anatomies in the world

Eiriksson et al. "Precision and accuracy parameters in structured light
3-D scanning." International Archives of the Photogrammetry, Remote

Sensing and Spatial Information Sciences 5 (2016)
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Iso-surfaces or pixel-wise classifications

8 DTU Compute, Technical University of Denmark
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CAD Models

Chang, Angel X., et al. "Shapenet: An information-rich 3d model repository.”
(2015).
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Important properties of meshes

B Rotational aspects (geometric invariances)
B Size (number of vertices and faces)

B Topology and if it is “manifold”

B Mesh sampling and noise properties
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Translation and rotational aspects

B Does it make sense to have
a “canonical orientation” of
your objects?

B Does the method require
that the objects are pre-
oriented?

B Translation is often fixed by
aligning center-of-mass
— Not a universal solution

11 DTU Compute, Technical University of Denmark
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Mesh sizes

Shapenet model Hundreds (guess) Hundreds (guess)
(CAD)

Facial scan with 110.000 35.440
accuracy~0.5 mm

Left atrium from CT scan 35.000 65.000
(voxel size 0.50mm~ 3)

(iso-surface)

Scanned H. C. @rsted 1.375.930 2.751.840
(accuracy 150 mikrometer)

Full head model with 450.000 830.000
accuracy ~1 mm

FAUST human body 6.890
(processed)

12 DTU Compute, Technical University of Denmark



" What are the topogogical equivalences of ]

the three meshes?

Sphere, Sphere, Plane
Sphere, Plane, Plane
Sphere, Plane, Tube
Plane, Sphere, Tube

Sphere, Sphere, Sphere
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Mesh topology
B Topologically equivalent to a
— Sphere, plane’ tUbe, donut? Fidelity

— or something far far beyond?
B [s it "manifold” ?

Open
surfaces

| Complex
Topology

Venkatesh, Rahul, et al. "DUDE: Deep Unsigned Distance Embeddings
for Hi-Fidelity Representation of Complex 3D
Surfaces." arXiv:2011.02570 (2020).
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Mesh sampling and noise?

B Are the vertices sampled equally over the underlying
surface?

B Are the faces/triangles well shaped?

— Classical marching cubes makes notoriously bad aspect ratio
triangles

B What is the nature of the sampling n0|se7
— Outliers, Gaussian or something else?

17 DTU Compute, Technical University of Denmark
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A mesh biopsy

18 DTU Compute, Technical University of Denmark

B Raw facial scan from BU-
3DFE - a reference dataset

® “"Mesh in the wild”

— representative for current facial
scanners

B 106.320 vertices and 35.440
faces

"A 3D Facial Expression Database For Facial Behavior Research”

by Lijun Yin; Xiaozhou Wei; Yi Sun; Jun Wang; Matthew J. Rosato, 7th
International Conference on Automatic Face and Gesture Recognition, 10-12
April 2006 P:211 - 216
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A mesh biopsy

B Looks topologically to be a plane
— but it is not

B Flipped triangles
B Non-manifold parts
B Complex noise issues

B A face has a canonical orientation

— But facial scanners have many different
coordinate systems

19 DTU Compute, Technical University of Denmark
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Do topology and artefacts matter?

B Quite a lot actually

- A lot of the current methods have severe restrictions on topology
and if the surfaces are manifold

B A crude comparison

— Imagine your 2D CNN would crash and burn because of one single
bad pixel due to a dead CCD cell

M A typical solution — preprocess the mesh so it is nice and clean
— Often needs a specific solution for each dataset
— Large risk of removing / smoothing out important information

20 DTU Compute, Technical University of Denmark
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My experience with the U-net

Never heard of it

| have superficial knowledge
of the U-net

| have read several papers
where the U-net is used

| have tried a pre-made U-net

| have coded my own custom
version of the U-net

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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CNN recap — the U-net

segmentation
map

Pooling

=»conv 3x3, RelLy
copy and crgp

¥ max pool 2x2
4 up-conv
=» cOnv 1x1

Convolution

Ronneberger et al. "U-net: Convolutional networks for biomedical image segmentation.” MICCAI. 2015.
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Convolution — a conceptual heads-up

Your data — an image, a mesh,
a graph or something more
exotic

A kernel - containing
(learnable) weights

For each "node” in your data
you have values

For each "node” in your data
you have a neighborhood that
should be “"covered” by the
kernel

e

But first something
completely different!

23 DTU Compute, Technical University of Denmark
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Approaches covered in the following

B Multi-view rendering approaches
B Volumetric approaches
B Methods that define convolutions on meshes

B Methods based on implicit representations of
meshes.

— For example implicit functions on grids and signed/un-signed
distance fields

B Hybrid methods based on mesh operations for
convolutions and pooling

Disclaimer: It will mostly be a conceptual overview
I am certainly not a specialist on all approaches.

24 DTU Compute, Technical University of Denmark
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Multi-view Convolutional Neural Networks for 3D Shape Recognition

Hang Su Subhransu Maji Evangelos Kalogerakis Erik Learned-Miller

University of Massachusetts, Amherst

{hsu, smaji, kalo,elm}dcs.umass.edu

1900 google scholar citations per August 2021

View
pooling

ka

)

3D shape model

rendered with 2D rendered our multi-view CNN architecture
different virtual cameras images

Su, Hang, et al. "Multi-view convolutional neural networks for 3d shape recognition." Proceedings
of the IEEE international conference on computer vision. 2015.

bathtub
bed
chair
desk
dresser

output class
predictions
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Multi-view convolutional neural networks
for 3d shape recognition

B Object classification
based on 3D shapes

B Rendering pipeline

B Standard 2D CNN to do
the classification

26 DTU Compute, Technical University of Denmark
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Multi-view convolutional neural networks for 3d shape
recognition — rendering setup

B 12 positions with rotations
around the z-axis

B 80 views

— 20 vertices of an icosahedron
enclosing the shape

— 4 rotations around camera axes

27 DTU Compute, Technical University of Denmark



DTU Compute .B

Multi-view convolutional neural networks for 3d shape
recognition — network

CNN1 is pre-trained on ImageNet

[ bathtub
bed
chair

: desk
pzf”“:g H CNN, ]_ dresser

tollet

S—

output class

PD rendered our multi-view CNN architecture _
predictions

images
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Multi-view convolutional neural networks for 3d shape

recognition - results

Princeton ModelNet Modelnet40
« 128K 3D CAD models « 12K models
« 662 categories * 40 categories

Training Config. Test Config. Classification Retrieval

Method (Accuracy) (mAP)

Pre-train Fine-tune #Views #Views
(1 - - 58. 33.
2 - - 5.5% 40.
(3) 3D ShapeNets [ ModelNet40 ModelNet40 3% 49.
- ModelNet40 12 3. 37.

ModelNet40 3 /

ImageNet1K

ImageNetlK ModelNet40
ImageNet1K -
ImageNet1K ModelNet40

(10) MVCNN, 12x ImageNet1K -
(11) MVCNN, fit., 12x ImageNet1K ModelNet40
(12) MVCNN, f.t.+metric, 12x ImageNetlK ModelNet40
(13) MVCNN, 80x ImageNet1K -
(14) MVCNN, f.t., 80x ImageNetlK ModelNet40
(15) MVCNN, f.t.+metric, 80x ImageNetlK ModelNet40

* f.t.=fine-tuning, metric=low-rank Mahalanobis metric learning

29
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Multi-view convolutional neural networks for 3d shape
recognition — some observations

B If you can render your object — you can classify it
— Robust to topology variations, large mesh sizes, noise

B Pre-aligning an object to a canonical orientation is ill-
posed
- the view sequence is somewhat arbitrary
— Only partially rotationally invariant

30 DTU Compute, Technical University of Denmark
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Multi-view CNN for landmark prediction

One view CNN Module

NL heat maps

j CNN module
Vlewl
CNN module

3D view rays LSQ+RANSAC 1 -
L CNN module Prediction

View NV

Paulsen et al. "Multi-view consensus CNN for 3D facial landmark placement.". Proc. Asian
Conference on Computer Vision. (2018)
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_; NC 64 128 NL

RGB

256 x 256

256 x 256
256 x 256

Curvature

4 L)

128 128 256 256 256 256 L 256 NL

NL heat maps

256 x 256

128 x 128

® Stack 256 256 256 256 NL
€D Elementwise add

3x3 conv

= dropout @ @ -»

3x3 conv, RelU

R Residual Block

128 x 128

¥ 2 x 2 max pool
Hourglass module

f 2X NN upsampling and 3x3 conv
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3D landmark prediction

B Given a set of rendered faces

B 2D landmark positions are
estimated

B A predicted landmark in 2D
corresponds to a line in space

33 DTU Compute, Technical University of Denmark
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What can RANSAC do for me here?

Sample random positionsin
space for view directions

Render coherent images of
skin

Robustly estimate a line
crossing avoiding outlier
influence

¥ Effectively computing
T intersection between rays and

a triangulated surface

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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Least squares and RANSAC
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Using trained network on MR data

Works with significant
Trained on the z-buffer / distance map amount of surface noise

http://shapeml.compute.dtu.dk/

38 DTU Compute, Technical University of Denmark
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Volumetric CNN for object classification
occupancy representation

3D Shape

Prediction by
partial object

R
m
mlpconv mlpconv mlpconv
(48, 6, 2; 48; 48) (160, 5, 2; 160; 160) (512, 3, 2; 512; 512) 40  Prediction by

2048 2048 whole object

Volumetric Occupancy Grid

30 x 30 x 30 occupancy grid

Qi, Charles R., et al. "Volumetric and multi-view cnns for object classification on 3d data.” Proceedings of the
IEEE conference on computer vision and pattern recognition. 2016.

Wu, Zhirong, et al. "3d shapenets: A deep representation for volumetric shapes." Proceedings of the IEEE
conference on computer vision and pattern recognition. 2015.

39 DTU Compute, Technical University of Denmark
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Volumetric CNN for object classification

class prediction class prediction

40
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Volumetric CNN for object classification -
some observations

B If you can turn your object solid — you can classify it
— Can only handle closed surfaces

B Pre-aligning an object to a canonical orientation is ill-
posed

— Only partially rotationally invariant

B Massive loss of resolution when using this volumetric
representation

41 DTU Compute, Technical University of Denmark
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Extrinsic vs. intrinsic

Extrinsic Intrinsic

Cao, Wenming, et al. "A comprehensive survey on geometric deep learning." IEEE Access 8
(2020): 35929-35949.

42 DTU Compute, Technical University of Denmark
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Convolution — a conceptual heads-up

43 DTU Compute, Technical University of Denmark

e

Your data — an image, a mesh,
a graph or something more
exotic

A kernel - containing
(learnable) weights

For each "node” in your data
you have values

For each "node” in your data
you have a neighborhood that
should be “"covered” by the
kernel
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Hybrid methods
for convolutions

47 DTU Compute, Technical University of Denmark

based on mesh operations
and pooling

MeshCNN used for semantic segmentation of
3D objects.

The labelling is done per edge

To the left the result of the segmentation

Second, third and fourth row show
simplified/reduced/pooled meshes

https://ranahanocka.github.io/MeshCNN/

Hanocka, Rana, et al. "Meshcnn: a network with an
edge." ACM Transactions on Graphics (TOG) 38.4
(2019): 1-12.


https://ranahanocka.github.io/MeshCNN/
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MeshCNN — nhode (edge) data (features)

m Five features per edge:
- The dihedral angle
— The two inner angles
- The two edge-length ratios

m Neighborhood of edge e

m Invariant to translation, scaling
and rotation

(e1,e2,e3,e4) =(a+c,b+d,|a—cl|, |b-d|
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MeshCNN - convolutions

B Symmetric
features on 1-ring
neighbors

m Normal features
for edge itself, e,

m 1 x5 standard 2D
convolutions

(elﬁe2:e3:e4) — (a + C:b + d ‘a o C‘? ‘b o d‘)

50



DTU Compute .B

MeshCNN - pooling / unpooling

m The edge with the feature vector of lowest magnitude
is collapsed - similar to standard mesh decimation
m Five edges — Two edges

m Bookkeeping matrix G (size #edge x #edge)

b, .. | -
p.= avg(a,b,e)
-8,

¢, q=avg(c.d e),

51
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MeshCNN - network architectures

Symmetric up- and down path

Segmentation (Down)

ResConv fi, X 32
MeshPool — 1800
ResConv 32 X 64
MeshPool — 1350
ResConv 64 X 128
MeshPool — 600
ResConv 128 X 256

52 DTU Compute, Technical University of Denmark
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MeshCNN with U-net architecture

Based on BSc work of Bjgrn Marius Schreblowski Hansen &
Mathias Micheelsen Lowes

TP
I ] 3
|m—
||| p—

53
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MeshCNN - results

Classification SHREC Human Body Segmentation

Method  Split 16  Split 10 | Method # Features Accuracy
MeshCNN  98.6 % | MeshCNN 5 92.30%
3

SNGC 91.02%

[Ezuz et al. 2017] Toric Cover 26 88.00%
PointNet++ 3 90.77%

DynGraphCNN 3 89.72%

GCNN 86.40%

MDGCNN 89.47%

https://ranahanocka.qgithub.io/MeshCNN/

Hanocka, Rana, et al. "Meshcnn: a network with an edge." ACM Transactions on
Graphics (TOG) 38.4 (2019): 1-12.

54 DTU Compute, Technical University of Denmark
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MeshCNN - observations

B Achieved impressive segmentation results on
standard datasets

B Invariant to rotation, scaling and translation

B Limited to small meshes with a few hundred edges
— Due to N2 memory foot prints (in matrix G)

B Vulnerable to mesh topology and surfaces being
manifold
— Can create non-manifold surfaces during pooling

55 DTU Compute, Technical University of Denmark
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Sparse MeshCNN with attentation
- paper in review

Based on BSc work of Bjgrn Marius Schreblowski Hansen &
Mathias Micheelsen Lowes

WATCHMAN

X
A

Prediction of intersection between the left atrium and the left atrial appendage in
the human heart. For simulation of surgical device insertion.

56 DTU Compute, Technical University of Denmark
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Sparse MeshCNN

e In MeshCNN
- The matrix G is of size n_?
— Scales quadratically with mesh size

e In Sparse MeshCNN
— The matrix G is sparse
— Can operate on larger meshes

®
WATCHMAN — ‘\.‘ #

Amplatzer™ Amulet™

+3

57 DTU Compute, Technical University of Denmark



DTU Compute .ﬂ

Methods based on convolutions on meshes

58 DTU Compute, Technical University of Denmark



@ PyTorch

geometric

latest

Search docs

NOTES
Installation
Introduction by Example
Message Passing Networks
Your Own Datasets
Advanced Mini-Batching
Memory-Efficient Aggregations
TorchScript Support
GNN Cheatsheet
Colab Notebooks

External Resources

PACKAGE REFERENCE
h_geometric
B torch_geometric.nn
Convolutional Layers
Dense Convolutional Layers
Normalization Layers
Global Pooling Layers
Pooling Layers
Dense Pooling Layers
Unpooling Layers
Models
Functional
DataParallel Layers
h_geometric.data
h_geometric.datasets
h_geometric.transforms
h_geometric.utils

h_geometric.io

Convolutional Layers

MessagePassing

GCNConv

ChebConv

SAGEConv

GraphConv

GravNetConv

GatedGraphConv

ResGatedGraphConv

GATConv

GATv2Conv

TransformerConv

AGNNConv

TAGConv

GINConv

GINEConv

ARMAConv

SGConv

Base class for creating message passing layers of the form

The graph convolutional operator from the “Semi-supervised Classification with
Graph Convolutional Networks"” paper

The chebyshev spectral graph convolutional operator from the “Convolutional
Neural Networks on Graphs with Fast Localized Spectral Filtering” paper

The GraphSAGE operator from the “Inductive Representation Learning on Large
Graphs” paper

The graph neural network operator from the “Weisfeiler and Leman Go Neural:
Higher-order Graph Neural Networks” paper

The GravNet operator from the “Learning Representations of Irregular Particle-
detector Geometry with Distance-weighted Graph Networks” paper, where the
graph is dynamically constructed using nearest neighbors.

The gated graph convolution operator from the “Gated Graph Sequence Neural
Networks" paper

The residual gated graph convolutional operator from the “Residual Gated Graph
ConvNets” paper

The graph attentional operator from the “Graph Attention Networks” paper

The GATv2 operator from the “How Attentive are Graph Attention Networks?”
paper, which fixes the static attention problem of the standard eatcenv layer: since
the linear layers in the standard GAT are applied right after each other, the ranking
of attended nodes is unconditioned on the query node.

The graph transformer operator from the “Masked Label Prediction: Unified
Message Passing Model for Semi-Supervised Classification” paper

The graph attentional propagation layer from the “Attention-based Graph Neural
Network for Semi-Supervised Learning” paper

The topology adaptive graph convolutional networks operator from the “Topology
Adaptive Graph Convolutional Networks” paper

The graph isomorphism operator from the “How Powerful are Graph Neural
Networks?” paper

The modified eIncenv operator from the “Strategies for Pre-training Graph Neural
Networks” paper

The ARMA graph convolutional operator from the “Graph Neural Networks with
Convolutional ARMA Filters” paper

The simple graph convolutional operator from the “Simplifying Graph Convolutional

Networks” paper

The approximate personalized propagation of neural predictions layer from the
“Predict then Propagate: Graph Neural Networks meet Personalized PageRank”
paper

MECony

RGCNConv

FastRGNConv

SignedComv

DNAConV

PointNetCony

PointCony

GHMCony

SplineComv

MNCony

ECCony

CGCony

EdgeConv

DynamicEdgeConv

PPFCanv

FeaStConv

HypergraphConv.

LEConv

PNACOnV

ClusterGCNConv.

GENCanv

GCN2Cony

PANConV

WLConv

FiLMCony

SuperGATCony

for Learning Molecular Fingerprints” paper

The relational graph convolutional operator from the “Modeling Relational Da
Graph Convolutional Networks” paper

See ReCNCony

The signed graph convolutional operator from the “Signed Graph Convolutional
Network” paper

The dynamic neighborhood aggregation operator from the “Just Jump: Towards
Dynamic Neighborhood Aggregation in Graph Neural Networks” paper

The PointNet set layer from the “PointNet: Deep Learning on Point Sets for 3D
Classification and Segmentation” and “PointNet++: Deep Hierarchical Feature
Learning on Point Sets in a Metric Space” papers

alias of terch_geometric.nn.conv.point_conv.PointNetConv

The gaussian mixture model convolutional operator from the “Geometric Deep
Learning on Graphs and Manifolds using Mixture Model CNNs” paper

The spline-based convolutional operator from the “SplineCNN: Fast Geometric
Deep Learning with Continuous B-Spline Kernels” paper

The continuous kernel-based convolutional operator from the “Neural Message
Passing for Quantum Chemistry” paper.

alias of torch_geometric.nn.conv.nn_conv.MCony

The crystal graph convolutional operator from the “Crystal Graph Convolutional
Neural Networks for an Accurate and Interpretable Prediction of Material
Properties” paper

The edge convolutional operator from the “Dynamic Graph CNN for Learning on
Point Clouds” paper

The dynamic edge convolutional operator from the “Dynamic Graph CNN for
Learning on Point Clouds” paper (see torch_geometric.nn.conv.EdgeConv ), where the
graph is dynamically constructed using nearest neighbors in the feature space.

The convolutional operator on X-transformed points from the “PointCNN:
Convolution On X-Transformed Points” paper

The PPFNet operator from the “PPFNet: Global Context Aware Local Features for
Robust 3D Point Matching” paper

The (translation-invariant) feature-steered convolutional operator from the
“FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis” paper

The hypergraph convolutional operator from the “Hypergraph Convolution and
Hypergraph Attention” paper

The local extremum graph neural network operator from the “ASAP: Adaptive
Structure Aware Pooling for Learning Hierarchical Graph Representations” paper,
which finds the importance of nodes with respect to their neighbors using the
difference operator:

The Principal Neighbourhood Aggregation graph convelution operator from the
“Principal Neighbourhood Aggregation for Graph Nets” paper

The ClusterGCN graph convolutional operator from the “Cluster-GCN: An Efficient
Algorithm for Training Deep and Large Graph Convolutional Netwaorks” paper

The GENeralized Graph Convolution (GENConv) from the “DeeperGCN: All You
Need to Train Deeper GCNs” paper.

The graph convolutional operator with initial residual connections and identity
mapping (GCNII) from the “Simple and Deep Graph Convolutional Networks” paper

The path integral based convolutional operator from the “Path Integral Based
Convolution and Pooling for Graph Neural Networks” paper

The Weisfeiler Lehman operator from the “A Reduction of a Graph to a Canonical
Form and an Algebra Arising During this Reduction” paper, which iteratively refines
node colorings:

The FiLM graph convolutional operator from the “GNN-FiLM: Graph Neural
Networks with Feature-wise Linear Modulation” paper

The self-supervised graph attentional operator from the “How to Find Your Friendly
Neighborhood: Graph Attention Design with Self-Supervision” paper
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@ PyTorch

geometrlc

latest

Installation

Introduction by Example

Creating Message Passing Networks

Creating Your Own Datasets
Advanced Mini-Batching
Memory-Efficient Aggregations
TorchScript Support

GNN Cheatsheet

Colab Notebooks

External Resources

PACKAGE REFERENCE

torch_geometric

B torch_geometric.nn

Convolutional Layers
Dense Convolutional Layers
Normalization Layers
Global Pooling Layers
Pooling Layers
Dense Pooling Layers
Unpooling Layers
Models
Functional
DataParallel Layers
torch_geometric.data
torch_geometric.datasets
torch_geometric.transforms
torch_geometric.utils

torch_geometric.io

& Read the Docs

v: latest ¥

Pooling Layers

TopKPooling
papers

. The self-attention pooling operator from the ° I
SAGPooling papers

The edge pooling operator from the

EdgePoolin,
s s and papers.

- The Adaptive StrLcture Aware Poo\l g operator fl om the
ASAPooling

PANPooling

Memory based pooling layer from ° aph N C paper, which
learns a coarsened graph representation based on soft cluster assignments

MemPooling

Pools and coarsens a graph given by the torch_geometric.data.pata Object
according to the clustering defined in ciuster .

max_pool

Pools and coarsens a graph given by the torch_geometric.data.pata Object
according to the clustering defined in ciuster .

avg_paol

max_pool_x Max-Pools node features according to the clustering defined in <iuster .

Max pools neighboring node features, where each feature in data.x is replaced by
max_pool_neighbor_x the feature value with the maximum value from the central node and its
neighbors.

avg_pool_x Average pools node features according to the clustering defined in ciuster .

Average pools neighboring node features, where each feature in data.x is
replaced by the average feature values from the central node and its neighbors.

avg_pool_neighbor_x

graclus \ Mu Ar 1" paper of plckl 1&: an unmarked vertex and
matching |t with one of its unmarked neighbors (that maximizes its edge weight).

nditioned Filters in
voxel_grid g N g paper, whlch overlays a regular grid of user-
defined size over a pomr c\oud and clusters all points within the same voxel.

atu
paper, wh\ch |terahve|y samples the mo;t dlstant
pomt with regard to the rest points.

Finds for each element in y the k nearest pointsin x.
knn_graph Computes graph edges to the nearest « points.
radius Finds for each element in y all points in x within distance ».

radius_graph Computes graph edges to all points within a given distance.

nearest Clusters points in x together which are nearest to a given query pointin y .
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Convolutions on meshes

|
!

Polar coordinates p,

Monti et al., Geometric deep learning on graphs and manifolds using mixture model CNNs, 2017, CVPR

[y hat, (x. X) f(x') dx'
. — ) X)) (X)) dx! D (X)) (8,1) = —=—
(D)N(p, 0) ‘/X‘/u» (o, X) f(x') dx (Do (x)f) T at, (6, 20) d

27 Pmax J
U= A,,'J}iﬁf":,ﬂf(, A s 080 (fxg) (x) = /g 6, 1) (Do (X)) (0, 1) drdf @) =Y gDy
(D)N(p, O)dpdd =

Method Pseudo-coordinates u(r.y) Weight function w;(u), j =1

CNN [23] Local Euclidean x(z,y) = x(y) — x(x) d(u —uy)
. 732 \1
GCNN [26]  Local polar geodesic plz.y).0(z,y) exp(— él} u-—u;) ( g ) (u—1uy))

ACNN [7] Local polar geodesic plz.y).0(x,y) exp(— éu. R; (¢
GCN [21] Vertex degree deg(x), deg(y) (l —|1- ?lz-l|) (

r—1

DCNN [3] Transition probability in r hops  p(z.y),..., P (x,y)  id(uj)

Cao, Wenming, et al. "A comprehensive survey on geometric deep
learning." IEEE Access 8 (2020): 35929-35949.
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Convolution — a conceptual heads-up

62 DTU Compute, Technical University of Denmark

e

Your data — an image, a mesh,
a graph or something more
exotic

A kernel - containing
(learnable) weights

For each "node” in your data
you have values

For each "node” in your data
you have a neighborhood that
should be “"covered” by the
kernel
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Convolutions on meshes

B Main differences between
approaches

- How is a node neighborhood
defined / computed

— What values are used per node

- How are the weights in the
convolutions defined

- How are we dealing with kernel
rotational invariance?

Cao, Wenming, et al. "A comprehensive survey on geometric deep
learning." IEEE Access 8 (2020): 35929-35949.

63 DTU Compute, Technical University of Denmark
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One example - MoNet

Polar coordinates p,

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., & Bronstein, M. M. (2017). Geometric
deep learning on graphs and manifolds using mixture model CNNs. Proc.CVPR.

64 DTU Compute, Technical University of Denmark
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MoNet - vertex features

B Vertex features should
represent local geometry

B Local shape signature
- Histogram of local normal

vectors
- 544 dimensional vector (per
vertex)
Fio. 4. Sionature struc- Tombari et al. "Unique signatures of histograms for local
& ‘° e _‘ “ surface description." European conference on computer
ture for SHOT vision. 2010.

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., & Bronstein, M. M. (2017). Geometric
deep learning on graphs and manifolds using mixture model CNNs. Proc.CVPR.

65 DTU Compute, Technical University of Denmark
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MoNet - vertex features.
Bam! Back to classical shape matching
Shape I\/Iatching and Object

Recognition Using Shape Contexts

Serge Belongie, Member, IEEE, Jitendra Malik, Member, |[EEE, and Jan Puzicha

Fig.4. Signature struc-
ture for SHOT

The local shape descriptor used in MoNet is similar to 3D extensions of shape contexts
— and comes with its own choices, strengths and weaknesses.

Tombari et al. "Unique signatures of histograms for local surface description.” European conference
on computer vision. 2010.

66 DTU Compute, Technical University of Denmark
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Local reference frame

Fig.4. Signature struc-
ture for SHOT

The local reference frame is the per-vertex
coordinate system

Determines the orientation of SHOT
feature extractor

Might determine the orientation of the
local convolution patch

— Unless convolution is taken as the

maximum over all rotations (around the
normal) of the patch

67 DTU Compute, Technical University of Denmark
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Inconsistent local reference frame

« Imagine that you had no general orientation of your 2D
image

« For each pixel, your convolution kernel has an arbitrary
orientation

« That is the default situation with 3D meshes

68 DTU Compute, Technical University of Denmark
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Inconsistent local reference frame

 One approach:

+ Compute local reference frame (coordinate system) following the gradient in
the image

« Convolutions would be following gradients - maybe good - maybe bad

« Another approach: Rotate kernel and take the maximum output...very expensive

o

69 DTU Compute, Technical University of Denmark
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Computing a Local reference frame
- using a 3D equivalent of gradients/curvature

Sample points in a local neighborhood
Do eigenvector decomposition

3 Eigenvectors
— One is the normal (smallest eigenvalue)
— Two follow the surface

Normally inconsistent and ambiguous
Reference below claims to have solved it

Used in MoNet (as far as I understand the
paper)

Tombari et al. "Unique signatures of histograms for local surface
description." European conference on computer vision. 2010.

70 DTU Compute, Technical University of Denmark
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MoNet and similar methods - observations

B Choice of local features to
represent geometry

B Are they dependent on a
consistent local reference
frame?

B Topological constraints?

Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., & Bronstein, M. M. (2017). Geometric
deep learning on graphs and manifolds using mixture model CNNs. Proc.CVPR.

71 DTU Compute, Technical University of Denmark
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A note on spectral methods

B There is a strong relation between Fourier analysis
and convolutions for 1D and 2D signals

B This can be replicated on 3D meshes and is also
related to the mesh Laplacian

B Quite a lot of spectral methods have been published

B It seems that the are loosing popularity and they are
beyond the scope and time of this presentation
B Some comments can be found in

— Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., &
Bronstein, M. M. (2017). Geometric deep learning on graphs
and manifolds using mixture model CNNs. Proc.CVPR.

72 DTU Compute, Technical University of Denmark
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Deep learning with implicit functions
The signed distance function

== m \/oxel grid - each voxel
contains a scalar value

B Carries information about the
shape in the entire field

73 DTU Compute, Technical University of Denmark
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DeepSDF

] ‘ fo(x) ~ SDF(x), V& € Q.
e  of implicit

surface
@ ®

e SDF >0

(@) SZ)P:<10 "

Code D SDF
(%,v,2)
(b) Coded Shape DeepSDF

Park, Jeong Joon, et al. "Deepsdf: Learning continuous signed distance functions for shape
representation.” Proc. Computer Vision and Pattern Recognition. 2019.

74 DTU Compute, Technical University of Denmark
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DeepSDF - single shape representation

Single shape representation

f() s,

Distance from
(x,y,z) to surface

ﬁ | —> | Decoder — D_]

75
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DeepSDF - multiple shape representation

Multiple shape representation
f(z,p) = s, pER3 sER

Py

X
Y
z

P Distance from

latent o - f
- | — X,Y,Z) to surface
vectors | ~ (x:¥:2)
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DeepSDF - Training

* Training:

zZy

@ Xi ={(pj.s):

Clamped L1-distance
N K
; 1 2
argmin > | 3" £(fo(z0)),5) + — Izl
0.zi};_; i=1 \j=1 ,\
Regularization

Distance from
(x,y,z) to surface

latent-

vectors Decoder

Backpropagation

Park et.al., "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation ", CVPR2019
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DeepSDF - results

Results:

Reconstructing known shapes
Reconstructing unknown shapes
Shape completion

Latent space shape interpolation

.

- . . W . X ; s : : (a) Input Depth (b) Completion (ours)
Figure 1: DeepSDF represents signed distance functions (SDFs) of shapes via latent code-conditioned feed-forward decoder networks.

Above images are raycast renderings of DeepSDF interpolating between two shapes in the learned shape latent space. Best viewed digitally.

78 DTU Compute, Technical University of Denmark
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DeepSDF - observations

B You should be able compute a signed distance to
your mesh
— Needs closed surfaces

B Not rotational invariant — unless you do heavy data
augmentation

B Can do shape classification, shape synthesis and
shape completion
- Has a very usable latent space

79 DTU Compute, Technical University of Denmark
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Other implicit approaches

Implicit Functions in Feature Space for 3D Shape Adversarial Generation of Continuous Implicit Shape
Reconstruction and Completion Representations

Julian Chibane'* Thiemo Alldieck ' Gerard Pons-Moll' o -
Marian Kleineberg, Matthias Fey and Frank Weichert

'Max Planck Institute for Informatics, Saarland Informatics Campus, Germany TU Dortmund University, Germany
2University of Wiirzburg, Germany

Fﬁ‘ b S e Jh;

SAL: Sign Agnostic Learning of Shapes from Raw Data

Matan Atzmon and Yaron Lipman
Weizmann Institute of Science
Rehovot, Israel

80 DTU Compute, Technical University of Denmark
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Unsigned distance fields

Training: Testing:

pe (XY,2)
d, ,

Decoder| ——
(o) .

- |Decoder
fo)

A

Backpropagation

Z.s: Uniform point-grid Predicted UDF on grid

. o°
Backpropagation Aot 1 1
- Decodéi — o

Implicit Neural Distance Representation for Unsupervised and Supervised Classification of
Complex Anatomies. Kristine Aavild Juhl et al. MICCAI 2021

81
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Unsigned distance fields

B Can handle arbitrary topologies
B Meshing an unsigned distance field is very tricky

Train
Reconstruction

_a

/Q %)
A “"%/—*Sa(

N‘? ﬁ »//“' w ‘Q / % / /

Reconstrucnon

7] “Jbﬂfﬁﬂﬁ ) )

Implicit Neural Distance Representation for Unsupervised and Supervised Classification of
Complex Anatomies. Kristine Aavild Juhl et al. MICCAI 2021

82 DTU Compute, Technical University of Denmark
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Shape classification using unsigned distance
fields

ESOF Male @ ESOF Male
ESOF Female ® ESOF Female
EARS Right

EARS_Left

Fig. 3. Visualization of the latent space projected to 2D using principle component
analysis (PCA) for the 128 dimensional latent space of the three datasets (left) and

the ESOF-faces only (right). Opaque: training set, Solid: test set.

Implicit Neural Distance Representation for Unsupervised and Supervised Classification of
Complex Anatomies. Kristine Aavild Juhl et al. MICCAI 2021

83 DTU Compute, Technical University of Denmark
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That's is — the tour is over!

84 DTU Compute, Technical University of Denmark



DTU Compute .ﬂ

If you have data and need a way forward

B What is the nature of my data?

- number of samples, number of vertices, topology, cleanness,
canonical orientations?

® What is my goal?

- segmentation, classification, shape correspondence, shape
completion?

B What approach fits my data and goals?
— can it handle your data (size is a main issue)
— can it be adapted to solve your task?
— are there any code available
— what are the hardware requirements (mainly GPU memory size)

— what are the software / operating system requirements?

85 DTU Compute, Technical University of Denmark
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What if I need a more theoretical research
direction?

B Find your own niche that you want to explore
B Locate an unsolved problem

B In GDL there are lots of problems
— but also a large of number of people looking at them.

B You should have a competitive advantage
— new idea, alternative approaches

B A new mesh convolution operator will probably have
limited novelty

86 DTU Compute, Technical University of Denmark



