
Andreas Bærentzen, Visual Computing, DTU Compute

Introduction to Meshes and
Geometry Processing
Shape tools that might be useful for geometric deep learning

Multi-Layer Perceptron

• An MLP computes the value of a function: 
 

• Where is the non-linear activation
function, and are the learned weights

• Why is this powerful?

y = f(x) = ϕ ∑
j

w1
j ϕ (∑

i

w0
i,jxi)

ϕ
w

w0

w1

y

x0

x1

x2

x3

Convolutional Neural Network

• Now, groups of pixels form inputs to
the MLP, turning it into a filter

• By design this filter has

• translational equivariance

• but not rotational equivariance

• Now, data is not always on a regular
grid…

Geometry

• Now it is not so easy to define convolutions …

• Why do we care? We might

• have a shape space: each shape is a point

• Recognition, classification, synthesis

• want to learn a function on the surface

• segmentation

• mapping between shapes

• position of fiducial/annotation points.

Geometry
Can come in many guises

Surface/mesh

Image

Graph

Skeleton

Implicit/distance field/

Voxels

GEL and PyGEL https://github.com/janba/GEL 
https://pypi.org/project/PyGEL3D/
http://www2.compute.dtu.dk/projects/GEL/PyGEL

• GEL is a C++ library of geometry processing tools including (but not limited to)

• a half-edge based polygonal mesh,

• a graph data structure, and

• various spatial data structures

• PyGEL

• a set of Python bindings for core features in GEL

• has its own viewer based on OpenGL

• PyGEL can be used from Jupyter notebooks (Also Google Colab)

Who are you !?
The intended audience for this presentation

• Students with a good background in

• engineering math

• machine learning

• computer programming

• The bits that can be directly reproduced in  
the PyGEL framework are labelled as shown:

• in search of a “swiss army knife” of methods for geometry processing that
can be used for geometric deep learning.

Works in
PyGEL

Overview
Declaration of contents
• Part 1

• Introduction to mesh data structures

• Mesh simplification and optimization

• Discrete log map and exp map

• Linear functions on meshes and the Laplace Beltrami Operator

• Smoothing, parametrization, spectral analysis, and functional maps

• Part 2

• Skeletons and topology

• Implicit functions and distance fields

• Volumetric Reconstruction

Part 1
Meshes, mostly, and the operators that work on them

Polygonal Meshes
Triangle meshes to be honest

• A common representation

• Efficient for computer graphics

• Usually the end result of optical 
acquisition processes

• Because acquired: noisy

• Mesh vertices can be seen as grid 
points and used to store function values

• Each mesh has its own connectivity

Representation of Polygonal Meshes
How do store a mesh in a computer system?!

• Indexed face Set

• Edge-based data structures

Indexed Face Set

0
1

2 3 4 5

6 7
8 9

10

 VERTICES
 0: (-0.2, 1.5, 0)
 1: (1.3, 1.7, 0)
 2: (-1.1, 0.4, 0)
 3: (0.0, 0.45, 1)
 4: (1.1, 0.5, 1.2)
 5: (2.1, 0.75, 0.2)
 6: (-1.2, -1,0.01)
 7: (-0.3, -1.2,2)
 8: (1.3,-0.9, 3)
 9: (2.0 -0.8,1.2)
10: (0.4, -2.1, -1.1)

FACES
0: 0,2,3
1: 0,3,4,1
2: 1,4,5
3: 2,6,7,3
4: 3,7,8,4
5: 4,8,9,5
6: 6,10,7
7: 7,10,8
8: 8,10,9

AB, et al. Guide to computational geometry processing: foundations,
algorithms, and methods. Springer Science & Business Media, 2012.

Half Edge
(Hmesh)

h.previous
h.next

h.opposite

h.face

f.halfedge

v.halfedge

h.vertex

AB, et al. Guide to computational geometry processing: foundations,
algorithms, and methods. Springer Science & Business Media, 2012.

Manifolds

• An -manifold is everywhere locally mappable to

• A manifold is covered by charts, , forming an atlas,  
where is a homeomorphism, i.e.

• one-to-one and onto

• continuous with continuous inverse

• A manifold can be embedded in a space of higher dimension

• When we think of surfaces, we often think of 2-manifolds embedded in

• We often need maps from the 2-manifold into a 2D parametrization and back

n ℝn

ϕ : M → U ⊂ ℝn {ϕ}
ϕ

ℝ3

Half Edge Mesh and Manifoldness

• A mesh is a 2-manifold if

• Every edge is adjacent to two triangles

• Triangles incident on a vertex form a single fan

• The half edge representation can only represent manifold meshes

• … along with meshes that 
are not manifold but close 
enough …

Manifold with boundary Not manifold, but we  
can deal with it

Edge Collapse

Vertex Split

Edge !ip

Face split Edge Split

Vertex Move

Triangle
Subdivision

Quadrilateral
Subdivision

Things we can do with a mesh

And more ...

Simplifying by Collapsing
Edges

Edge Collapse

Vertex Split

Original

Simplified using
33000 random collapses

Simplified using
33000 judicious collapses

Edge Collapse Simplification

4 1 Simplifying and Optimizing Triangle Meshes

greedy strategy More recently, attention has been turned to other methods which are based
on creating periodic parametrizations of the triangles meshes based on vector
fields such as those produced by the principal curvature directions. A good
example of such a method is QuadCover by Kälberer et al. [?]. The advantage
of these methods is that they produce quad meshes that align well with the
symmetry directions of the object and generally have an appearance similar
to meshes that have been created by a human designer.

However, when it comes triangle mesh simplification, a relatively early al-
gorithm due to Garland and Heckbert is still much used [?]. Instead of remov-
ing a vertex along with its incident faces, the vertex is removed by merging it
with a neighboring vertex thus collapsing their shared edge (cf., Section ??).
In fact, this operation can more generally be seen as merging any two vertices
in which case topological changes are still possible, but in most cases we only
merge connected vertices and often explicitly disallow a merge if the topology
would change.

1.1.1 Simplification by Edge Collapses

When performing mesh simplification we generally wish to reduce the com-
plexity of the model while preserving the geometry as much as possible. In
the context of a method based on edge collapse, a greedy strategy would be
to always choose the edge collapse which has the least impact on geometry
and to go on until the simplification goal has been reached. Thus, we need
a cost function which tells us how much the geometry changes for a given
edge collapse. With such a cost function, we can perform mesh simplification
using Algorithm ??. This algorithm requires a priority queue, which is an

Algorithm 1 Mesh Simplification
1. For each edge we store the cost of a collapse in a priority queue.
2. Extract the collapse which is cheapest and perform it. This removes an edge along with

its adjacent triangles. Its two vertices are merged into a single vertex, possibly with a
new position.

3. Recompute the collapse cost for all edges a↵ected by the collapse and update their
position in the priority queue.

4. Until the stop condition is met, we go to 2.

o↵-the-shelf data structure. However, a banal but tricky issue is that we need
to update the entries in the priority queue in Step 3. A simple alternative is
to put a time stamp on the edges. When an edge cost is updated, we update
the time stamp and put an entry with the new time stamp in the priority
queue. When an element is extracted from the queue, we discard it if the
time stamps do not match.

10%

Works in
PyGEL

AB, et al. Guide to
computational geometry
processing: foundations,
algorithms, and methods.
Springer Science &
Business Media, 2012.

Optimizing by Edge Flipping

Edge !ip

Edge !ip

Degeneracies can arise

This edge is flipped

Edge is double after flip

We cannot flip an edge if either end-point is valence 3
(or 2 at the boundary)

1.2 Triangle Mesh Optimization by Edge Flips 11

Algorithm 2 Mesh Optimization
1. Initially, �F is computed for all edges, and for each edge e a pair < �F (e), e > is

inserted into a priority queue if �F (e) < 0.
2. The next step is a loop where we iteratively extract and remove the record with the

�F corresponding to the greatest decrease in energy from the heap and flip the corre-
sponding edge.

3. After an edge flip, �F (e0) must be recomputed for any edge e0 if its �F (e0) has changed
as the result of e being flipped.

4. The loop continues until the priority queue is empty.

�F = �(smallest angle after flip� smallest angle before flip). (1.13)

Note that in this case �F is only the local change in energy. Unless, the
smallest of the six angles happens to be the globally smallest angle, the
energy of the entire mesh is una↵ected. Never the less, if the algorithm is run
until no more local changes can be made, the mesh is Delaunay.

Having performed the flip, we need to update �F (e0) for any edge e
0

belonging to the two triangles which share the flipped edge e.
An important aspect of this algorithm is that it also works quite well on

meshes which are not planar, and in Figure 1.3 we see the result (bottom
left) of applying the method to a simplified bunny where the connectivity
has been corrupted by random edge flips (shown top right). The result is,
in fact, very similar to the original model (top left) but near the bottom
of the model, we notice that the silhouette has become a bit jagged. This is
unsurprising because in a sense our energy only takes the triangle quality and
not the mesh quality into account. [[[A citation or argument that the above
algorithm actually produces a Delaunay triangulation is needed.]]]

1.2.1 Energy Functions based on the Dihedral Angles

Fig. 1.6 Edge Configurations: A triangle mesh approximates a surface with a sharp bend.
On the left an edge is transverse to the bend. On the right an edge flip has been performed,
and the new edge follows the bend.

Maximizing the minimum angle improves triangle quality but not neces-
sarily the mesh geometry. Consider Figure 1.6 where points are sampled near

Mesh Optimization

AB, et al. Guide to computational geometry processing: foundations,
algorithms, and methods. Springer Science & Business Media, 2012.

Examples of Energy
Functions

• Maximize minimum angle. Makes mesh Delaunay

• Minimize absolute dihedral angle (times length)

• This is really curvature minimization

• Minimize dihedral angle raised to some power.

Mesh Optimization

Original 10% Connectivity perturbed

Works in
PyGEL

Mesh Optimization

Original 10% Maximized min angle

Works in
PyGEL

Mesh Optimization

Minimized dihedral angle 10% Maximized min angle

Works in
PyGEL

Mesh Optimization

Minimized dihedral angle Both Maximized min angle

Works in
PyGEL

Linear Functions on Triangle Meshes
A practical example

• is stored as a value per vertex

• Linearly interpolated for visualization

• Down and dirty with PyGEL:

f

from pygel3d import hmesh, graph, gl_display as gl
from numpy import array
from math import cos

m = hmesh.load("armadillo-very-simple.obj")
g = graph.from_mesh(m)
P = m.positions()
V = gl.Viewer()
f = array([cos(P[v][2]*P[v][1]/500) for v in m.vertices()])
V.display(m,g,mode='s',data=f)

Works in
PyGEL

Linear Functions on Triangle Meshes
Barycentric coordinates
• Given a function, , defined on the vertices of a triangle mesh,

• we use barycentric coordinates to extend it to any point, i.e. 
 

 , where

• and

•

• Barycentric coordinates

• are easy to compute as a ratio of triangle areas

• can be used to interpolate quantities stored at vertices

• , , and are functions of and form a linear basis

f

f(x) = bi fi + bj fj + bk fk

x = bipi + bjpj + bkpk

bi + bj + bk = 1

bi(x) bj(x) bk(x) x

i

kj

x

Linear Functions on Triangle Meshes
The Umbrella Operator

• The umbrella applied to is 
 

 , where are the neighbors of vertex ,

• as a matrix product,  

 , where .

f

(Δf)i =
1

|Ni | ∑
j∈Ni

fj − fi Ni i

(Δf)i = (Lf)i Lij =

1
|Ni |

j ∈ Ni

−1 j = i
0 otherwise

Linear Functions on Triangle Meshes
The Umbrella Operator

• Let be an matrix of vertex positions

• We can compute new positions thusly:  
 

• Umbrella applied to the vertex positions smoothing

• Note: this is just replacing vertex with avg. of neighbors!

• Note: we could have applied this to other functions than
vertex position!

P n × 3

P′ = (I + L)P

→

P

(ΔP)i

P′

Linear Functions on Triangle Meshes
The Umbrella Operator

• In 1D:

• In 2D, and on a grid: 

 
 

 

• The umbrella operator is an approximation of the Laplacian

f′ ′ (0) ≈ f(1) + f(−1) − 2f(0)

Δf ≈
∂2f
∂x2

+
∂2f
∂y2

Δf(x, y) ≈ f(x + 1,y) + f(x − 1,y) + f(x, y + 1) + f(x, y − 1) − 4f(x, y)

= ∑
(a,b) ∈N(x,y)

f(a, b) − f(x, y)

x + 1,yx − 1,y

x, y + 1

x, y − 1

x, y

The Laplace Beltrami Operator
Enter the parametrization

• The umbrella operator assumes neighbors distributed
evenly on unit disk in the parameter domain, but

• The Laplace Beltrami Operator includes the surface
metric in its definition: 
 

  

 
where is the surface metric

• If is isometric,

Δf = ∇ ⋅ ∇f =
1

|gij |
∂i (|gij | gij∂j f)

gij = xi ⋅ xj

x gij = I

u

v

x(u, v)
xu

xv

AB, et al. Guide to computational geometry processing: foundations,
algorithms, and methods. Springer Science & Business Media, 2012.

The Laplace Beltrami Operator
Green’s First Identity

• Consider the projection of onto a basis function (linear “tent” - one for each vertex)  
 

• Plugging into G.F.I. 
 

• Note: inner products are 

 and

Δf ψ

⟨Δf, ψi⟩ = ∑
k

⟨Δf, ψi⟩Tk

∑
k

⟨Δf, ψi⟩Tk
= ∑

k

⟨N ⋅ ∇f, ψi⟩∂Tk
− ∑

k

⟨∇f, ∇ψi⟩Tk
= − ∑

k

⟨∇f, ∇ψi⟩Tk

⟨ f, g⟩ = ∫A
fg dA ⟨X, Y⟩ = ∫A

XTY dA

Crane, Keenan. "Discrete differential geometry: An applied introduction." Notices of the AMS, Communication (2018): 1153-1159.

The Laplace Beltrami Operator
Expressing in terms of the basisf

• Requiring that  
 

• We obtain: 
 

f = ∑
j

fj ψj

∑
k

⟨∇f, ∇ψi⟩Tk
= ∑

k ⟨∇ ∑
j

fj ψj , ∇ψi⟩
Tk

= ∑
k

∑
j

fj⟨∇ψj , ∇ψi⟩Tk

The Laplace Beltrami Operator
Gradients

• The gradient of a linearly interpolated is
constant over each triangle:

,

where and  
 
Likewise for and

• Note:

f

∇f(x) = fi ∇bi + fj ∇bj + fk ∇bk

∇bi = R90
ei

2A
2A = hi∥ei∥

bj bk

ei + ej + ek = 0 ⟹ ∇bi + ∇bj + ∇bk = 0

i

kj

x

ei

ek ej
hi

The Laplace Beltrami Operator
Computing the inner products

• So what is ?

• If but both and are in  
 

• Hence, for each triangle 
 

• And 
 

⟨∇ψj, ∇ψi⟩Tk

i ≠ j i j Tk

∇ψi ⋅ ∇ψj = (R90
ei

2A) ⋅ (R90
ej

2A) = −
ei ⋅ −ej

2A∥ei × −ej∥
= −

cos β∥ei∥∥ej∥
2A sin β∥ei∥∥ej∥

= −
cot β
2A

⟨ψi, ψj⟩Tk
= ∫Tk

−
cot βij

2A
dA = −

1
2

cot βij

⟨∇ψi, ∇ψi⟩Tk
= − ⟨∇ψi, ∇ψj + ∇ψk⟩Tk

=
1
2

(cot αjk + cot γki)

i

kj ei

ej

βγ

α

The Laplace Beltrami Operator
Assembling the operator

• For a vertex, 
 

 

• this is the well-known cotan formula due to Pinkall and Polthier
[1993]. Normalizing, we obtain the discrete LBO 
 

 

 

where , and is the area of triangle incident on

⟨Δf, ψi⟩ =
1
2 ∑

j∈Ni

(cot αij + cot βij)(fj − fi)

(Δf)i ≈
⟨Δf, ψi⟩
⟨1,ψi⟩

=
1

2Ai ∑
j∈Ni

(cot αij + cot βij)(fj − fi)

Ai =
1
3 ∑

k∈Ti

Ak Ak k i

i j

αij

βij

The Laplace Beltrami Operator
Now as a matrix

• The not-so-symmetric based LBO, , is 
 

cot L

Lij =

cot(αij) + cot(βij)

2Ai
for j ∈ Ni

−∑k∈Ni
Lik for j = i

0 otherwise

i j

αij

βij

Smoothing
A shootout between several methods!

• We now have two discrete Laplace operators and many ways to use them

• Explicit smoothing:

• Implicit smoothing:

• Taubin’s method:

• Constrained Laplacian smoothing: smooth only in tangent plane

• Geodesic smoothing: smooth in a map

• Feature preserving smoothing: very different, other trade-offs

P′ = (I + λL)P

(I − λL)P′ = P

P′ = (I − μL)(I + λL)P

log

Original Mesh

Noisy

Laplacian Smoothing
, iterations = 10, time < 0.009 secondsλ = 0.25

Smoothing with the LBO (mean curvature)
, iterations = 1 (implicit), time = 2.1 secondsλ = 3

Smoothing with the LBO (mean curvature)
, iterations = 1 (explicit), time = 2.1 secondsλ = 3

Umbrella vs LBO
Left: Umbrella, , iter=250, time = 0.11 seconds

Right: LBO, , iter=1 (implicit), time = 2.1 seconds

λ = 0.25
λ = 100

Mesh structure much
better preserved

Taubin Smoothing (w. Umbrella)
, iterations = 20, time = 0.08 secondsλ = 0.5, μ = − 0.52

Tangential Area-Weighted Laplacian Smoothing
, iterations = 20, time = 0.32 secondsλ = 1

• Projects Laplacian into
orthogonal complement
of surface normal

• Weights neighboring
vertices with area

• Improves triangle size
and shape while not
changing geometry
(much)

Note: This does not remove noise
well. The original mesh was

smoothed!

TAL Smoothing + Optimization
, iterations = 20+ (convergence)λ = 1

• Here TAL smoothing
was combined with
maximization of
minimum angle

Geodesic Smoothing
, iterations = 20, time = 20.9 secondsλ = 0.5

• Smoothing of noisy mesh
but constrained to
original (not noisy) mesh

Bilateral Normal Filtering
iterations = 50, time = 21.3 seconds

• Bilateral filtering of normals of
adjacent faces, followed by
vertex refitting

• Note that this  
preserves edges …

• Perhaps too well …

Mesh Parametrization
What if I want a global map of a shape?

• We assume a
shape with disc
topology

Mesh Parametrization
Such as this!

• The mapping should
establish an invertible 1-1
map

• We also want preservation
of certain properties

• angles

• areas

• Can you guess what is
not preserved here?

Mesh Parametrization

Least Squares Conformal Maps

• Angles are preserved (in the LS sense) by the mapping to 2D (u,v)

• We can express the conformal energy

• Where is the Dirichlet energy and is the area of the map.

• is minimized by harmonic functions

• Gradient of triangle areas imposed as boundary constraints

• Two vertices must be fixed

EC(u) = ED(u) − A(u)

ED =
1
2 ∫S

∥∇u∥dA A

ED Δu = 0

ctrl click to select two
vertices

Results

• The Riemannian exponential, 
 

, where  
 
maps a tangent vector in direction onto the
same length, , of a geodesic,

expR(tv) = γ(t) ∥v∥ = 1

v
t γ

expR : TM → M

γ

v

A geodesic is the
generalization of a straight
line to a curved surface:
the curve of constant
bearing

The shortest path between
two points are always
geodesics, but two points
can be connected by
multiple geodesics

The Discrete Exponential Map
A Map between a 2D domain and a 3D surface

• The discrete maps from a tangent plane to  
the surface

• The discrete map is the inverse:

• used to map a checkerboard texture  
from the tangent plane to the surface

• This provides a way to sample a surface  
consistently up to rotation

• Computation similar to Dijkstra’s algorithm: 
[Melvær and Reimers. Geodesic polar coordinates on
polygonal meshes. Computer Graphics Forum, 31(8), 2012]

exp

log

LBO Matrix

• The symmetric based LBO: 
 

 , 

 
where is the area of triangles incident on vertex

cot

Lij =

cot(αij) + cot(βij)

2 AiAj

for j ∈ Ni

−∑k∈Ni
Lik for j = i

0 otherwise

Ai i

i j

αij

βij

LBO Eigenvectors

Example Shape The Asian Dragon

eigenvector : 1 LBO Eigenvectors

eigenvector : 10 LBO Eigenvectors

eigenvector : 100 LBO Eigenvectors

eigenvector : 999 LBO Eigenvectors

LBO eigenvectors
Technicalities

• The LBO is a huge matrix, but:

• Typically, we need only a subset of the eigenvectors

• Power methods can find a subset for the largest eigenvalues

• We need the smallest, though …

• Solution: compute eigenvalues and eigenvectors for

• The Spectra library provides a modern Eigen compatible interface

L−1

Spectral Analysis
The Fourier Transform but for Meshes

• Let be a basis of LBO eigenfunctions for a given mesh, i.e. ,
where is a diagonal matrix of eigenvalues

• We can now transform a function 
 

• And get it back 
 

• Note: we can set entries of to zero / perform other manipulations

Φ L = ΦΛΦT

Λ

̂f = ΦTf

f = Φ ̂f
̂f

Spectral Analysis and Reconstruction
4 eigenvectors

31 eigenvectors

Spectral Analysis and Reconstruction

301 eigenvectors

Spectral Analysis and Reconstruction

1000 eigenvectors

Spectral Analysis and Reconstruction

Example Shape

Spectral Analysis and Reconstruction

Experiment: Project XYZ vectors onto LBO
eigenvectors. Then double contribution from

precisely one eigenvector

Suspect Lineup

Shape Analysis Using the
Auto Diffusion Function

r

r

Geodesic disc of
radius r has small

perimeter

Geodesic disc of
radius r has large

perimeter

the Auto diffusion function

From the heat kernel,

we now define

which is simply a function that describes how much
[quantity subj. to diffusion] is left at x at time t

h(t, x, y) =
N

∑
i=0

e−tλiΦxiΦyi

ADFt(x) =
N

∑
i=0

e−tλi/λ1Φ2
xi

Gȩbal, K., et al. "Shape analysis using the auto diffusion
function." Computer Graphics Forum. Vol. 28. No. 5.

The Auto Diffusion function
min max

21/21/81/32

t

1/128

t=1

t=0.1

t=0.01

t=0.002

Reeb graph

Reeb skeletons based on the ADF

f(x)=k

Biasotti, Silvia, et al. "Reeb
graphs for shape analysis
and applications." Theoretical
computer science 392.1-3
(2008): 5-22.

correspondence and Symmetry
Detection

Related to
Sun, Jian, Maks Ovsjanikov,
and Leonidas Guibas. "A
concise and provably
informative multi‐scale
signature based on heat
diffusion." Computer graphics
forum. Vol. 28. No. 5.

Functional Maps

• Given corresponding functions , on meshes
 and , respectively, and a

• basis of eigenvectors and s.t. 
 

 and

• We seek such that , so 
 

, 
 
where and

f i gi

M1 M2

Φ Γ

f i = Φ ̂f i gi = Γ ̂gi

C ̂gi = C ̂f i

G = ΓCΦTF

F⋅i = f i G⋅i = gi

M1

M2

Ovsjanikov, Maks, et al. "Functional
maps: a flexible representation of maps
between shapes." ACM Transactions on
Graphics (TOG) 31.4 (2012): 1-11.

Functional Maps

• We find , by

• placing corresponding landmarks on and

• associating a set of heat kernels with each
landmark

• Secret sauce:

• the delta functions should match

• Use ICP in eigen-coefficient space

• Use close to isometric shapes

f i gi

M1 M2

M1

M2

Optimized

Un-Optimized

Part 2
In which we encounter skeletons, implicits, and distance fields

Skeletonization of 3D Meshes

Fiedler Vector
Aka first non-constant 
eigenvector of the  
Laplace-Beltrami
Operator

Mesh as Graph

Separators from Fiedler vector

• Using algorithm similar to 
Dijkstra’s we visit all vertices 
in order of Fiedler vector 
value

• For specific time steps, 
we output the front as  
a selection of vertices 
(color coded)

Skeleton

• A skeleton is trivially 
computed by contracting 
separators obtained from 
front sets.

• The skeleton is not  
satisfactory

• Repeat the process for
several eigenvectors of the
Laplace-Beltrami
eigenvector

• Results are increasingly  
hopeless …

• We can significantly
improve the skeleton by
packing separators from a
variety of eigenvectors

Computing Local Separators

Computing Local Separators

Local separators are separators  
of a subgraph. In practice, we  
grow a cluster of vertices and  
a separator is found when the 
front breaks into two components

Skeleton from Local Separators

Local Separators
Works in
PyGEL

Skeleton from Local Separators
Works in
PyGEL

AB and Eva Rotenberg. “Skeletonization
via Local Separators”. In: Transactions on
Graphics (2021). Accepted for publication.

Skeletons Compared

Local separators LBO Eigen vector skeleton

Topology

• Each edge not in a spanning tree corresponds
to a loop in the graph

• Thus, the skeleton provides both geometric
and topological information

Topology
Three ways to describe topology

Homeomorphism Homotopy equivalence Homology
There is a 1-1, onto, invertible

Mapping between
homeomorphic shapes

Two shapes are homotopy
equivalent if one can be smoothly
deformed into the other

Establishes ways to distinguish
classes of cycles

Edelsbrunner, Herbert, and John Harer.
Computational topology: an introduction.
American Mathematical Soc., 2010.

An Implicit Surface

• Implicit surfaces are simply functions of the form

• The surface is

• We ask that on

• It is easy to compose implicits as a sum of basis
functions 
 

 ,  

where e.g. , is a constant,
and is a positive definite matrix

f : ℝ3 → ℝ

S = {x | f(x) = 0}
∇f ≠ 0 S

f(x) = ∑
i

θi(x)

θi(x) = ki exp(xTMix) ki
Mi 3 × 3

An Implicit Surface

• Setting , we get result on the right

• This is done in Blender

• They are called “Metaballs” in Blender

M = I

Blinn, James F. "A generalization of
algebraic surface drawing." ACM
transactions on graphics (TOG) 1.3
(1982): 235-256.

An Implicit Surface

• Now with two implicits and one moving
around.

• The blending shows clearly

• No - I don’t really know that they are
Gaussian’s but that is what Jim Blinn
used.

Blinn, James F. "A generalization of
algebraic surface drawing." ACM
transactions on graphics (TOG) 1.3
(1982): 235-256.

Discrete Distance Field
• Given a surface, S, a distance field of  

that surface is a function: dS(x,y,z)

• dS(x,y,z) = 0 on surface

• dS(x,y,z) < 0 inside

• dS(x,y,z) > 0 outside

• dS is a discrete distance field if it is sampled

Properties
• Defining Propery: The gradient is unit length

• The Mean Curvature (of an isocontour) is simply the
divergence of the gradient/Laplacian/trace of the Hessian

∥∇dS∥ = 1

H = ∇ ⋅ ∇dS = ΔdS =
∂2dS

∂x2
+

∂2dS

∂y2
+

∂2dS

∂z2

Jones, Mark W., J. Andreas Baerentzen,
and Milos Sramek. "3D distance fields: A
survey of techniques and applications."
IEEE Transactions on visualization and
Computer Graphics 12.4 (2006): 581-599.

Distance Field Variations

• Scalar field. Sometimes our distance field does not
contain actual distance values: we can usually fix that.

• Signed vs unsigned. An unsigned distance field provides
no inside-outside information

• TSDF. Truncated Signed Distance Fields only inform us of
the distance in a narrow band around the surface

Applications

Distance Fields can be used for dynamic surfaces, i.e. level set representation

Distance fields are 
generally the representation

of choice for surface
reconstruction

Computing Distance Fields

• From triangle meshes

• From a set of voxels

• From an existing scalar field

Triangle Mesh to Distance Field

• Input:

• Triangle Mesh M, Bounding hierarchy B(M), Voxel grid G

• Output: distance field D

• For each voxel v in G:

• Locate closest triangle: t = B.closest(v)

• compute D[v] = t.dist(v)
Works in
PyGEL

From Scalar Field to
Distance Field

• Given a scalar field, 𝚽, we iteratively solve

• where

• Note: it is import to compute the gradient in the upwind
direction.

dΦ
dt

+ s(Φ0)(∥∇Φ∥ − 1) = 0

s(x) =
x

x2 + ϵ2

Jones, Mark W., J. Andreas Baerentzen,
and Milos Sramek. "3D distance fields: A
survey of techniques and applications."
IEEE Transactions on visualization and
Computer Graphics 12.4 (2006): 581-599.

From Binary Voxels to Distance Field

• Starting from a binary voxel grid, the reinitialization method might be slowish.

• Try the Fast Marching Method (FMM)

• The FMM is based on Dijkstra’s shortest path algorithm…

• to be precise it is Dijkstra!

Techniques for Polygonization

• Find 2D contours and connect

• Grow triangles on the surface

• Divide space into cells, approximate surface in each cell

• Primal vs dual methods

Isosurface Polygonization

• marching cubes is the 
most common method.

• Polygonization cell is 
a cube of eight voxels

• Pro: manifold

• Con: Ugly triangles

+ + + +

+ + - +

+ - - +

+ + + +

• For each cube:

• Compute table index

• Pick triangle configuration

• Place vertices on isosurface!

• Optional: Interpolate gradients
to get surface normal

Marching Cubes

Lorensen, William E., and Harvey E.
Cline. "Marching cubes: A high resolution
3D surface construction algorithm." ACM
siggraph computer graphics 21.4 (1987):
163-169.

Marching Cubes ambiguity

• Some configurations are ambiguous

• We must select consistent tables

• In dual contouring, we make a
box around each voxel.

• If neighboring voxel has opposite
sign, we emit shared face

• Then we project onto the
isosurface

• and split quads into triangles

Dual Contouring

+ + + +

+ + - +

+ - - +

+ + + +

• In dual contouring, we make a
box around each voxel.

• If neighboring voxel has opposite
sign, we emit shared face

• Then we project onto the
isosurface

• and split quads into triangles

Dual Contouring

+ + + +

+ + - +

+ - - +

+ + + +

Dual Contouring
Placing vertices

• In DC vertices are not constrained to edges

• Additional freedom avoids most poorly
shaped triangles

Dual Contouring
Placing vertices

• In DC vertices are not constrained to edges

• Additional freedom avoids most poorly
shaped triangles

• Placing vertices:

1. smooth mesh

• In DC vertices are not constrained to edges

• Additional freedom avoids most poorly
shaped triangles

• Placing vertices:

1. smooth mesh

2. compute normal for each vertex

Dual Contouring
Placing vertices

• In DC vertices are not constrained to edges

• Additional freedom avoids most poorly
shaped triangles

• Placing vertices:

1. smooth mesh

2. compute normal for each vertex

3. sample both directions along normal

Dual Contouring
Placing vertices

+

-

+

-

• In DC vertices are not constrained to edges

• Additional freedom avoids most poorly
shaped triangles

• Placing vertices:

1. smooth mesh

2. compute normal for each vertex

3. sample both directions along normal

4. move vertex to intersection

Dual Contouring
Placing vertices

Original distance field model

Cuberille meshing

Dual Contouring
(Cuberille meshing)
vertices pushed onto
surface

Dual Contouring
(Cuberille meshing)
vertices pushed
mesh triangulated

Dual of cuberille
meshing.
Marching cubes
vertex placement

Dual of cuberille
meshing.
Marching cubes
vertex placement.
Triangulated

Basis Function Summation
How do we reconstruct from a point cloud already?!

• Robust and easy:

• Create a distance field by summing a basis function for each point

• Run dual contouring to get a mesh

• Or more likely: use the widely available Poisson reconstruction code

Basis Function Summation
• For each voxel, v, locate points pi with

normal ni within sphere of given radius

• Compute plane distance and square
Euclidean distance for each point:

• Compute sum of Gaussian weighted
plane distances for each voxel:

352 20 Surface Reconstruction from Point Clouds Andreas Bærentzen

compute the weighted sum. Since we would like the weight to decrease with
the distance to a given point, a Gaussian might be a good choice,

wp = exp(�↵kx� pk2) , (20.6)

where ↵ is a scaling factor. Now, the characteristic function is simply

�(x) =

P
i wpi(x) dpi,ni(x)P

i wpi(x)
, (20.7)

where i is an index that runs over all points. Note that wpi(x) = 1 when
x = pi and decreases smoothly (at a rate depending on ↵) as x moves away
from pi. Thus, (20.7) expresses that � should be very much like the distance
to the plane defined by each point-normal pair when we are close to one of the
points, and also that the distance functions are smoothly blended. We divide
by the sum of the weights to achieve a partition of unity which ensures that
� is a weighted average of the individual plane-distances meaning that the
value of (20.7) can be neither smaller nor greater than any of the individual
plane distances.

There is a problem with (20.7), however. We are trying to design an al-
gorithm that is scalable, but if we have millions of points, it is going to be
relatively costly to evaluate this formula. We could change the weight func-
tion such that it is exactly zero outside a predetermined radius of support.
Then, we could use a spatial data structure (e.g. a kD tree) to e�ciently find
the points within this radius. This simple strategy certainly works, but it is
still somewhat ine�cient if we need to evaluate � a great number of times to
determine the surface.

Instead, our strategy is to precompute the value of � at the points of a
regular 3D grid. We can think of this grid as a 3D image, and the 3D pixels
are generally called voxels, and the grid is called a voxel grid or simply a
volume. The notions are illustrated in Figure 20.4. Something that might be
confusing is that we can think of voxels (or pixels) as grid points but also as
little boxes (or squares). So which is it? The best answer seems to be that
we should think about a voxel as a grid point, but we can also think of the
volume as being divided into boxes where the centers are the grid points.
This perspective, is also very useful, and often the boxes are then referred
to as voxels. Admittedly, this is confusing, but sometimes slightly ambiguous
notions are important to deal with, and a voxel is just such a notion.

Using a voxel grid, a fairly e�cient algorithm becomes possible if we clamp
the weight function, wp, to zero outside a given region around p which we
will call the support in the following. For each point-normal pair, (p,n), we
now compute the plane distance, dp,n(x) for all grid points, x, that lie within
the support and add the value to the corresponding voxel in a grid that
represents the sum in the numerator of (20.7). Furthermore, we add wp(x)
to another grid containing the values in the denominator of (20.7).

20.2 Volumetric Reconstruction 351

[104]. This average is then used as the isovalue for isosurface polygonization
(cf., 18).

The Poisson reconstruction method has the advantage that the theory is
elegant and the intuition is extremely clear: we are looking for a function
whose gradient field matches the point normals. While the isosurface does
not precisely correspond to the theoretically correct surface we would get
by deconvolution, the method makes up for this potential source of error by
representing � adaptively using a hierarchical basis of compactly supported
functions. This is harder to implement but more space e�cient than using
a regular voxel grid. It also allows Kazhdan et al. to compute solutions at
greater precision. In their paper, the octrees used for the hierarchical repre-
sentation have depths of up to 10 which corresponds to a voxel grid resolution
of 10243 [104].

Figure 20.5 compares the method from Section 20.2.2 to screened Pois-
son Reconstruction1. Screened Poisson reconstruction is similar to Poisson
reconstruction but it adds an energy term to the formulation which penalizes
deviation from the isovalue at the points. In other words, screened Poisson
reconstruction ensures that the surface is closer to interpolating the input
points.

20.2.2 Basis Function Summation

The radial basis function method becomes costly for large numbers of points
because it requires that we solve a linear system to find the coe�cients.
Radial basis functions also have the problem that they change equally in all
directions going out from their center precisely because they are radial. If we
use RBFs to approximate a surface, we need to place basis functions both
inside and outside the surface in order to ensure that there is a gradient
perpendicular to the surface which is what we need in order to define a
characteristic function.

This means that we cannot place the radial basis functions on the surface
and instead we need to place them both inside and outside. It turns out to
be more convenient to use basis functions that are oriented and which have
a strong gradient that can be made to align with the normals of the input
points. Now, given a point, p, and an associated normal, n, we can define a
plane, and the distance to this plane is

dp,n(x) = nT (x� p) . (20.5)

dp,n turns out to be a good choice of basis function, but we need a way
to blend the basis functions for all of the points. We can use a weighting
function and then multiply all of the points by their respective weights and

1 Using MeshLab’s implementation: http://meshlab.sourceforge.net/

8 1 Surface Reconstruction from Point Clouds Andreas Bærentzen

compute the weighted sum. Since we would like the weight to decrease with
the distance to a given point, a Gaussian might be a good choice,

wp(x) = exp(�↵kx� pk2) , (1.6)

where ↵ is a scaling factor. Now, the characteristic function is simply

�(x) =

P
i wpi(x) dpi,ni(x)P

i wpi(x)
, (1.7)

where i is an index that runs over all points. Note that wpi(x) = 1 when
x = pi and decreases smoothly (at a rate depending on ↵) as x moves away
from pi. Thus, (1.7) expresses that � should be very much like the distance to
the plane defined by each point-normal pair when we are close to one of the
points, and also that the distance functions are smoothly blended. We divide
by the sum of the weights to achieve a partition of unity which ensures that
� is a weighted average of the individual plane-distances meaning that the
value of (1.7) can be neither smaller nor greater than any of the individual
plane distances.

There is a problem with (1.7), however. We are trying to design an al-
gorithm that is scalable, but if we have millions of points, it is going to be
relatively costly to evaluate this formula. We could change the weight func-
tion such that it is exactly zero outside a predetermined radius of support.
Then, we could use a spatial data structure (e.g. a kD tree) to e�ciently find
the points within this radius. This simple strategy certainly works, but it is
still somewhat ine�cient if we need to evaluate � a great number of times to
determine the surface.

Instead, our strategy is to precompute the value of � at the points of a
regular 3D grid. We can think of this grid as a 3D image, and the 3D pixels
are generally called voxels, and the grid is called a voxel grid or simply a
volume. The notions are illustrated in Figure 1.4. Something that might be
confusing is that we can think of voxels (or pixels) as grid points but also as
little boxes (or squares). So which is it? The best answer seems to be that
we should think about a voxel as a grid point, but we can also think of the
volume as being divided into boxes where the centers are the grid points.
This perspective, is also very useful, and often the boxes are then referred
to as voxels. Admittedly, this is confusing, but sometimes slightly ambiguous
notions are important to deal with, and a voxel is just such a notion.

Using a voxel grid, a fairly e�cient algorithm becomes possible if we clamp
the weight function, wp, to zero outside a given region around p which we
will call the support in the following. For each point-normal pair, (p,n), we
now compute the plane distance, dp,n(x) for all grid points, x, that lie within
the support and add the value to the corresponding voxel in a grid that
represents the sum in the numerator of (1.7). Furthermore, we add wp(x) to
another grid containing the values in the denominator of (1.7).

• For each voxel, v, locate points pi with
normal ni within sphere of given radius

• Compute plane distance and square
Euclidean distance for each point:

• Compute sum of Gaussian weighted
plane distances for each voxel:

352 20 Surface Reconstruction from Point Clouds Andreas Bærentzen

compute the weighted sum. Since we would like the weight to decrease with
the distance to a given point, a Gaussian might be a good choice,

wp = exp(�↵kx� pk2) , (20.6)

where ↵ is a scaling factor. Now, the characteristic function is simply

�(x) =

P
i wpi(x) dpi,ni(x)P

i wpi(x)
, (20.7)

where i is an index that runs over all points. Note that wpi(x) = 1 when
x = pi and decreases smoothly (at a rate depending on ↵) as x moves away
from pi. Thus, (20.7) expresses that � should be very much like the distance
to the plane defined by each point-normal pair when we are close to one of the
points, and also that the distance functions are smoothly blended. We divide
by the sum of the weights to achieve a partition of unity which ensures that
� is a weighted average of the individual plane-distances meaning that the
value of (20.7) can be neither smaller nor greater than any of the individual
plane distances.

There is a problem with (20.7), however. We are trying to design an al-
gorithm that is scalable, but if we have millions of points, it is going to be
relatively costly to evaluate this formula. We could change the weight func-
tion such that it is exactly zero outside a predetermined radius of support.
Then, we could use a spatial data structure (e.g. a kD tree) to e�ciently find
the points within this radius. This simple strategy certainly works, but it is
still somewhat ine�cient if we need to evaluate � a great number of times to
determine the surface.

Instead, our strategy is to precompute the value of � at the points of a
regular 3D grid. We can think of this grid as a 3D image, and the 3D pixels
are generally called voxels, and the grid is called a voxel grid or simply a
volume. The notions are illustrated in Figure 20.4. Something that might be
confusing is that we can think of voxels (or pixels) as grid points but also as
little boxes (or squares). So which is it? The best answer seems to be that
we should think about a voxel as a grid point, but we can also think of the
volume as being divided into boxes where the centers are the grid points.
This perspective, is also very useful, and often the boxes are then referred
to as voxels. Admittedly, this is confusing, but sometimes slightly ambiguous
notions are important to deal with, and a voxel is just such a notion.

Using a voxel grid, a fairly e�cient algorithm becomes possible if we clamp
the weight function, wp, to zero outside a given region around p which we
will call the support in the following. For each point-normal pair, (p,n), we
now compute the plane distance, dp,n(x) for all grid points, x, that lie within
the support and add the value to the corresponding voxel in a grid that
represents the sum in the numerator of (20.7). Furthermore, we add wp(x)
to another grid containing the values in the denominator of (20.7).

20.2 Volumetric Reconstruction 351

[104]. This average is then used as the isovalue for isosurface polygonization
(cf., 18).

The Poisson reconstruction method has the advantage that the theory is
elegant and the intuition is extremely clear: we are looking for a function
whose gradient field matches the point normals. While the isosurface does
not precisely correspond to the theoretically correct surface we would get
by deconvolution, the method makes up for this potential source of error by
representing � adaptively using a hierarchical basis of compactly supported
functions. This is harder to implement but more space e�cient than using
a regular voxel grid. It also allows Kazhdan et al. to compute solutions at
greater precision. In their paper, the octrees used for the hierarchical repre-
sentation have depths of up to 10 which corresponds to a voxel grid resolution
of 10243 [104].

Figure 20.5 compares the method from Section 20.2.2 to screened Pois-
son Reconstruction1. Screened Poisson reconstruction is similar to Poisson
reconstruction but it adds an energy term to the formulation which penalizes
deviation from the isovalue at the points. In other words, screened Poisson
reconstruction ensures that the surface is closer to interpolating the input
points.

20.2.2 Basis Function Summation

The radial basis function method becomes costly for large numbers of points
because it requires that we solve a linear system to find the coe�cients.
Radial basis functions also have the problem that they change equally in all
directions going out from their center precisely because they are radial. If we
use RBFs to approximate a surface, we need to place basis functions both
inside and outside the surface in order to ensure that there is a gradient
perpendicular to the surface which is what we need in order to define a
characteristic function.

This means that we cannot place the radial basis functions on the surface
and instead we need to place them both inside and outside. It turns out to
be more convenient to use basis functions that are oriented and which have
a strong gradient that can be made to align with the normals of the input
points. Now, given a point, p, and an associated normal, n, we can define a
plane, and the distance to this plane is

dp,n(x) = nT (x� p) . (20.5)

dp,n turns out to be a good choice of basis function, but we need a way
to blend the basis functions for all of the points. We can use a weighting
function and then multiply all of the points by their respective weights and

1 Using MeshLab’s implementation: http://meshlab.sourceforge.net/

8 1 Surface Reconstruction from Point Clouds Andreas Bærentzen

compute the weighted sum. Since we would like the weight to decrease with
the distance to a given point, a Gaussian might be a good choice,

wp(x) = exp(�↵kx� pk2) , (1.6)

where ↵ is a scaling factor. Now, the characteristic function is simply

�(x) =

P
i wpi(x) dpi,ni(x)P

i wpi(x)
, (1.7)

where i is an index that runs over all points. Note that wpi(x) = 1 when
x = pi and decreases smoothly (at a rate depending on ↵) as x moves away
from pi. Thus, (1.7) expresses that � should be very much like the distance to
the plane defined by each point-normal pair when we are close to one of the
points, and also that the distance functions are smoothly blended. We divide
by the sum of the weights to achieve a partition of unity which ensures that
� is a weighted average of the individual plane-distances meaning that the
value of (1.7) can be neither smaller nor greater than any of the individual
plane distances.

There is a problem with (1.7), however. We are trying to design an al-
gorithm that is scalable, but if we have millions of points, it is going to be
relatively costly to evaluate this formula. We could change the weight func-
tion such that it is exactly zero outside a predetermined radius of support.
Then, we could use a spatial data structure (e.g. a kD tree) to e�ciently find
the points within this radius. This simple strategy certainly works, but it is
still somewhat ine�cient if we need to evaluate � a great number of times to
determine the surface.

Instead, our strategy is to precompute the value of � at the points of a
regular 3D grid. We can think of this grid as a 3D image, and the 3D pixels
are generally called voxels, and the grid is called a voxel grid or simply a
volume. The notions are illustrated in Figure 1.4. Something that might be
confusing is that we can think of voxels (or pixels) as grid points but also as
little boxes (or squares). So which is it? The best answer seems to be that
we should think about a voxel as a grid point, but we can also think of the
volume as being divided into boxes where the centers are the grid points.
This perspective, is also very useful, and often the boxes are then referred
to as voxels. Admittedly, this is confusing, but sometimes slightly ambiguous
notions are important to deal with, and a voxel is just such a notion.

Using a voxel grid, a fairly e�cient algorithm becomes possible if we clamp
the weight function, wp, to zero outside a given region around p which we
will call the support in the following. For each point-normal pair, (p,n), we
now compute the plane distance, dp,n(x) for all grid points, x, that lie within
the support and add the value to the corresponding voxel in a grid that
represents the sum in the numerator of (1.7). Furthermore, we add wp(x) to
another grid containing the values in the denominator of (1.7).

1.2 Volumetric Reconstruction 7

This average is then used as the isovalue for isosurface polygonization (cf.,
??).

The Poisson reconstruction method has the advantage that the theory is
elegant and the intuition is extremely clear: we are looking for a function
whose gradient field matches the point normals. While the isosurface does
not precisely correspond to the theoretically correct surface we would get
by deconvolution, the method makes up for this potential source of error by
representing � adaptively using a hierarchical basis of compactly supported
functions. This is harder to implement but more space e�cient than using
a regular voxel grid. It also allows Kazhdan et al. to compute solutions at
greater precision. In their paper, the octrees used for the hierarchical repre-
sentation have depths of up to 10 which corresponds to a voxel grid resolution
of 10243 [5].

Figure 1.5 compares the method from Section 1.2.2 to screened Poisson
Reconstruction1. Screened Poisson reconstruction is similar to Poisson re-
construction but it adds an energy term to the formulation which penalizes
deviation from the isovalue at the points. In other words, screened Poisson
reconstruction ensures that the surface is closer to interpolating the input
points.

1.2.2 Basis Function Summation

The radial basis function method becomes costly for large numbers of points
because it requires that we solve a linear system to find the coe�cients.
Radial basis functions also have the problem that they change equally in all
directions going out from their center precisely because they are radial. If we
use RBFs to approximate a surface, we need to place basis functions both
inside and outside the surface in order to ensure that there is a gradient
perpendicular to the surface which is what we need in order to define a
characteristic function.

This means that we cannot place the radial basis functions on the surface
and instead we need to place them both inside and outside. It turns out to
be more convenient to use basis functions that are oriented and which have
a strong gradient that can be made to align with the normals of the input
points. Now, given a point, p, and an associated normal, n, we can define a
plane, and the distance to this plane is

dp,n(x) = nT (x� p) . (1.5)

dp,n turns out to be a good choice of basis function, but we need a way
to blend the basis functions for all of the points. We can use a weighting
function and then multiply all of the points by their respective weights and

1
Using MeshLab’s implementation: http://meshlab.sourceforge.net/

1.2 Volumetric Reconstruction 7

This average is then used as the isovalue for isosurface polygonization (cf.,
??).

The Poisson reconstruction method has the advantage that the theory is
elegant and the intuition is extremely clear: we are looking for a function
whose gradient field matches the point normals. While the isosurface does
not precisely correspond to the theoretically correct surface we would get
by deconvolution, the method makes up for this potential source of error by
representing � adaptively using a hierarchical basis of compactly supported
functions. This is harder to implement but more space e�cient than using
a regular voxel grid. It also allows Kazhdan et al. to compute solutions at
greater precision. In their paper, the octrees used for the hierarchical repre-
sentation have depths of up to 10 which corresponds to a voxel grid resolution
of 10243 [5].

Figure 1.5 compares the method from Section 1.2.2 to screened Poisson
Reconstruction1. Screened Poisson reconstruction is similar to Poisson re-
construction but it adds an energy term to the formulation which penalizes
deviation from the isovalue at the points. In other words, screened Poisson
reconstruction ensures that the surface is closer to interpolating the input
points.

1.2.2 Basis Function Summation

The radial basis function method becomes costly for large numbers of points
because it requires that we solve a linear system to find the coe�cients.
Radial basis functions also have the problem that they change equally in all
directions going out from their center precisely because they are radial. If we
use RBFs to approximate a surface, we need to place basis functions both
inside and outside the surface in order to ensure that there is a gradient
perpendicular to the surface which is what we need in order to define a
characteristic function.

This means that we cannot place the radial basis functions on the surface
and instead we need to place them both inside and outside. It turns out to
be more convenient to use basis functions that are oriented and which have
a strong gradient that can be made to align with the normals of the input
points. Now, given a point, p, and an associated normal, n, we can define a
plane, and the distance to this plane is

dp,n(x) = nT (x� p) . (1.5)

dp,n turns out to be a good choice of basis function, but we need a way
to blend the basis functions for all of the points. We can use a weighting
function and then multiply all of the points by their respective weights and

1
Using MeshLab’s implementation: http://meshlab.sourceforge.net/

1.2 Volumetric Reconstruction 7

This average is then used as the isovalue for isosurface polygonization (cf.,
??).

The Poisson reconstruction method has the advantage that the theory is
elegant and the intuition is extremely clear: we are looking for a function
whose gradient field matches the point normals. While the isosurface does
not precisely correspond to the theoretically correct surface we would get
by deconvolution, the method makes up for this potential source of error by
representing � adaptively using a hierarchical basis of compactly supported
functions. This is harder to implement but more space e�cient than using
a regular voxel grid. It also allows Kazhdan et al. to compute solutions at
greater precision. In their paper, the octrees used for the hierarchical repre-
sentation have depths of up to 10 which corresponds to a voxel grid resolution
of 10243 [5].

Figure 1.5 compares the method from Section 1.2.2 to screened Poisson
Reconstruction1. Screened Poisson reconstruction is similar to Poisson re-
construction but it adds an energy term to the formulation which penalizes
deviation from the isovalue at the points. In other words, screened Poisson
reconstruction ensures that the surface is closer to interpolating the input
points.

1.2.2 Basis Function Summation

The radial basis function method becomes costly for large numbers of points
because it requires that we solve a linear system to find the coe�cients.
Radial basis functions also have the problem that they change equally in all
directions going out from their center precisely because they are radial. If we
use RBFs to approximate a surface, we need to place basis functions both
inside and outside the surface in order to ensure that there is a gradient
perpendicular to the surface which is what we need in order to define a
characteristic function.

This means that we cannot place the radial basis functions on the surface
and instead we need to place them both inside and outside. It turns out to
be more convenient to use basis functions that are oriented and which have
a strong gradient that can be made to align with the normals of the input
points. Now, given a point, p, and an associated normal, n, we can define a
plane, and the distance to this plane is

dp,n(x) = nT (x� p) . (1.5)

dp,n turns out to be a good choice of basis function, but we need a way
to blend the basis functions for all of the points. We can use a weighting
function and then multiply all of the points by their respective weights and

1
Using MeshLab’s implementation: http://meshlab.sourceforge.net/

Basis Function Summation

BFS: Implementation
• We could use a kD-tree to find the points closest to each

voxel, but it is too slow

• Instead, loop over a region of the volume close to each
point.

• For each voxel in that region add the weighted distance
to one volume and the weight to another volume

• In a final pass, divide each voxel in the volume containing
the distance sums by the corresponding voxel in the weight
sum volume.

Screened
Poisson vs BFS

Kazhdan, Michael, and Hugues Hoppe.
"Screened poisson surface
reconstruction." ACM Transactions on
Graphics (ToG) 32.3 (2013)

Screened
Poisson vs BFS

BFS

Combinatorial

Digne, Julie, et al. "Scale space meshing
of raw data point sets." Computer
graphics forum. Vol. 30. No. 6.

Poisson

GEL and PyGEL https://github.com/janba/GEL 
https://pypi.org/project/PyGEL3D/
http://www2.compute.dtu.dk/projects/GEL/PyGEL

• GEL is a C++ library of geometry processing tools including (but not limited to)

• a half-edge based polygonal mesh,

• a graph data structure, and

• various spatial data structures

• PyGEL

• a set of Python bindings for core features in GEL

• has its own viewer based on OpenGL

• PyGEL can be used from Jupyter notebooks (Also Google Colab)

Thanks
Do you have any questions?

Acknowledgements
Thanks to collaborators!

Katarzyna Welnicka, Henrik Aanæs, Rasmus Larsen, Eva Rotenberg, Jens
Gravesen,

BONUS
Material or junk

3D Example

• Given a vector p in 3D, we can multiply p  
onto basis [XYZ]T

• From the vector in this basis, we can get
back p by multiplying onto [XYZ]

• If we set some coefficients to zero, we
project p onto a space of lower dimension

Eigensolutions 1D Laplacian

• We are looking for solutions to

• where

Lei = λiei

Lij =
−2 j = i
1 j = i ± 1
0 otherwise

Hint, use:
scipy.linalg.eigh

0 100 200 300
−0.1

−0.05

0

0.05

0.1
eigenvalue:1.7e-16
eigenvalue:-0.00034
eigenvalue:-0.00034
eigenvalue:-0.0013
eigenvalue:-0.0013

Spectral Smoothing
• We can now project our signal onto the basis of  

eigenvectors (analysis)

• and reconstruct simply by

• Note that p is actually a matrix of dimension Nx2,  
so we treat the vertices in parallel

• Entries of can be set to zero.  
This corresponds to removing frequencies.

p̂ = eTp

p = ep̂

p̂
Head (blue) and reconstruction using

seven eigenvectors (frequencies) (purple)

LSCM
Closely following
Polygonal Mesh Processing by
Botsch et al. CRC Press, 2010

Say we
have a
linear

function

pi

pj

pk

X =
pj � pi

kpj � pik

Y = n⇥Xn

Now, we need to solve

ru =
1

2A

yj � yk yk � yi yi � yj
xk � xj xi � xk xj � xi

�2

4
ui

uj

uk

3

5

= M

2

4
ui

uj

uk

3

5

ru�

0 �1
1 0

�
rv = 0

M

2

4
ui

uj

uk

3

5�

0 �1
1 0

�
M

2

4
vi
vj
vk

3

5 = 0

