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Multi-Layer Perceptron

 An MLP computes the value of a function:

)

(
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\ " )

« Where ¢ is the non-linear activation
function, and w are the learned weights

 Why is this powerful?



Convolutional Neural Network

* Now, groups of pixels form inputs to
the MLP, turning it into a filter

* By design this filter has
 translational equivariance
* but not rotational equivariance

 Now, data is not always on a regular
grid...



Geometry

 Now it is not so easy to define convolutions ...
 Why do we care? We might
* have a shape space: each shape is a point
* Recognition, classification, synthesis
« want to learn a function on the surface
e segmentation
* mapping between shapes

 position of fiducial/annotation points.




Geometry

Can come in many guises
o

Skeleton

[

|

Implicit/distance field/

Surface/mesh Graph Voxels




https://github.com/janba/GEL
GEL and PyGEL https://pypi.org/project/PyGEL3D/

http://www2.compute.dtu.dk/projects/GEL/PyGEL

 GEL is a C++ library of geometry processing tools including (but not limited to)
* a half-edge based polygonal mesh,
* a graph data structure, and
e various spatial data structures
« PyGEL
» a set of Python bindings for core features in GEL
* has its own viewer based on OpenGL

* PyGEL can be used from Jupyter notebooks (Also Google Colab)



Who are you !?

The intended audience for this presentation

« Students with a good background in

e engineering math
* machine learning

e computer programming

 The bits that can be directly reproduced in [ Works in }
the PyGEL framework are labelled as shown: PyGEL

 in search of a “swiss army knife” of methods for geometry processing that
can be used for geometric deep learning.




Overview
Declaration of contents
 Part 1

* |Introduction to mesh data structures

Mesh simplification and optimization

Discrete log map and exp map

Linear functions on meshes and the Laplace Beltrami Operator

Smoothing, parametrization, spectral analysis, and functional maps
* Part 2

» Skeletons and topology

 Implicit functions and distance fields

* Volumetric Reconstruction



Part 1

Meshes, mostly, and the operators that work on them
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* Mesh vertices can be seen as gri

 Each mesh has its own connectivity



Representation of Polygonal Meshes

How do store a mesh in a computer system?!

* |[ndexed face Set

 Edge-based data structures



Indexed Face Set

VERTICES

: (-0.2,1.5,0)
1.3,1.7,0)
-1.1,0.4, 0)
0,045, 1)
.1,0.5,1.2)
.1,0.75,0.2)
-1.2,-1,0.01)
-0.3,-1.2,2)
1.3,-0.9, 3)
2.0-0.8,1.2)
0.4,-2.1,-1.1)

Q
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10 AB, et al. Guide to computational geometry processing: foundations,
algorithms, and methods. Springer Science & Business Media, 2012.



\ h.previous f.halfedge
h.next
v.halfedge h.face
. *
(\ Y — ™ h.ertex
h.opposite
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AB, et al. Guide to computational geometry processing: foundations, ( I I I I I e S h)

algorithms, and methods. Springer Science & Business Media, 2012.
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Manifolds

« An n-manifold is everywhere locally mappable to R”

« A manifold is covered by charts, ¢ : M — U C R", forming an atlas, {gb}
where ¢ is a homeomorphism, i.e.

e one-to-one and onto
e continuous with continuous inverse
* A manifold can be embedded in a space of higher dimension
 When we think of surfaces, we often think of 2-manifolds embedded in R

* We often need maps from the 2-manifold into a 2D parametrization and back



Half Edge Mesh and Manifoldness

A mesh is a 2-manifold if
* Every edge is adjacent to two triangles
« Triangles incident on a vertex form a single fan
e The half edge representation can only represent manifold meshes

e ... along with meshes that
are not manifold but close
enough ...




Things we can do with a mesh

Edge Collapse

Edge Split

Vertex Split

Quadrilateral
Subdivision

Triangle
Subdivision

And more ...




Simplifying by Collapsing
Edges




Original



Simplified using
33000 random collapses




Simplified using
33000 judicious collapses




Edge Collapse Simplification [ & |

1. For each edge we store the cost of a collapse in a priority queue.

2. Extract the collapse which is cheapest and perform it. This removes an edge along with
its adjacent triangles. Its two vertices are merged into a single vertex, possibly with a
new position.

3. Recompute the collapse cost for all edges affected by the collapse and update their
position in the priority queue.

4. Until the stop condition is met, we go to 2.

AB, et al. Guide to
computational geometry
processing: foundations,
algorithms, and methods.
Springer Science &
Business Media, 2012.




Optimizing by Edge Flipping

Edge flip

dijy a6p3




Degeneracies can arise

Edge is double after flip

-~
..

This edge is flipped

We cannot flip an edge if either end-point is valence 3
(or 2 at the boundary)



Mesh Optimization

. Initially, AF is computed for all edges, and for each edge e a pair < AF(e),e > is
inserted into a priority queue if AF(e) < 0.

. The next step is a loop where we iteratively extract and remove the record with the
AF corresponding to the greatest decrease in energy from the heap and flip the corre-
sponding edge.

. After an edge flip, AF(e’) must be recomputed for any edge e’ if its AF'(e’) has changed
as the result of e being flipped.

. The loop continues until the priority queue is empty.

AB, et al. Guide to computational geometry processing: foundations,
algorithms, and methods. Springer Science & Business Media, 2012.



Examples of Energy
Functions

® Maximize minimum angle. Makes mesh Delaunay
® Minimize absolute dihedral angle (times length)
® This is really curvature minimization

® Minimize dihedral angle raised to some power.
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VVorksin
PyGEL

Linear Functions on Trlangle Meshes

A practical example

fis stored as a value per vertex
Linearly interpolated for visualization

Down and dirty with PyGEL.:

from pygel3d import hmesh, graph, gl_display as gl
from numpy import array
from math import cos

m = hmesh.load("armadillo-very-simple.obj")

g = graph.from_mesh(m)

P = m.positions()

V = gl.Viewer()

f = array([ cos(P[v]l[2]1xP[v][1]/500) for v in m.vertices()])
V.display(m, g, mode="s"',data=f)




Linear Functions on Triangle Meshes

Barycentric coordinates

« Given a function, f, defined on the vertices of a triangle mesh,

» we use barycentric coordinates to extend it to any point, i.e.
J(X) = b;f; + b,f; + b fy. , where
« X=0bp;+bp,+ bp; and
.@+@+m=1

» Barycentric coordinates

e are easy to compute as a ratio of triangle areas

e can be used to interpolate quantities stored at vertices

. b(X), bj(x), and b,(X) are functions of X and form a linear basis



Linear Functions on Triangle Meshes
The Umbrella Operator

« The umbrella applied to fis

(Af); = T Zf — f; , where N; are the neighbors of vertex i,
| V; | e
e as a matrix product, )
W JEN

. 0 otherwise



The Umbrella Operator

 Let P be an n X 3 matrix of vertex positions p

» \We can compute new positions thusly:
P'=1+L)P
 Umbrella applied to the vertex positions — smoothing

* Note: this is just replacing vertex with avg. of neighbors!

* Note: we could have applied this to other functions than
vertex position!




Linear Functions on Triangle Meshes

y+1
The Umbrella Operator

.X,

X —.l ,V |y x4+ 1y

» In1D: f(0) = f(1) + f(—1) — 2/(0)
Pf 3 | -
.In2D,Af%ﬁ+ﬁ and on a grid: Y

Aftx,y)  fix+ Ly) + f(x — Ly) +flx,y + ) + flx,y — 1) = 4f(x, y)
= Y fla.b)—fix,y)

(a,b) EN(x’y)

 The umbrella operator is an approximation of the Laplacian



The Laplace Beltrami Operator

Enter the parametrization

* The umbrella operator assumes neighbors distributed

.
evenly on unit disk in the parameter domain, but ‘
* The Laplace Beltrami Operator includes the surface U

metric in its definition: X

1 )
——9, ( | g g’@-f)

where ¢.. = X. - X. is the surface metric
7] [

Af=V . Vf=

- If X is isometric, g; = 1

AB, et al. Guide to computational geometry processing: foundations,
algorithms, and methods. Springer Science & Business Media, 2012.



The Laplace Beltrami Operator

Green'’s First Identity

« Consider the projection of Af onto a basis function i (linear “tent” - one for each vertex)

(Afw) = D (Afwr,

k
* Plugging into G.F..

N ALy = D ANV — 3 (VE Vs, - 3 (Ve
k k k |k

* Note: inner products are

(f. &) =J fgdAand (X,Y) =[ X7Y dA
A A

Crane, Keenan. "Discrete differential geometry: An applied introduction." Notices of the AMS, Communication (2018): 1153-11509.



The Laplace Beltrami Operator

Expressing f in terms of the basis

e Requiring that
f= 25
J

 We obtain:

Z (VE V), = Z
k

k

<v

. ,vl,/l.> =) Y V. Vg
ko]

Ty



The Laplace Beltrami Operator

Gradients

 The gradient of a linearly interpolated f'is
constant over each triangle:

VAX) = Vb, + £ Vb + Vb,

e.
where Vb, = Rgy— and 24 = h]|e/]| h,
2A

l

Likewise for b; and by,

* Note:



The Laplace Beltrami Operator

Computing the inner products

« Sowhatis (Vy;, V)1, ?

« Ifi #j butbothiandjarein T,

€ € €-—¢ cos fSlle;ll lle;ll cot 3 [
V- V= [ Rog—= | - | Roo- | = — == ) ==
2A 2A 2A||e; X —ej|| 2A s1nﬁ||e,-||||ej|| 2A
* Hence, for each triangle
cot f; 1
Wy = — dA = — —cotj;;
<l/jl "[/]>Tk ka A y ﬁ]
* And

1 .
(Vi Vg, = = (Vi Vit Vg, = S (cotay + cotyy) / €



The Laplace Beltrami Operator

Assembling the operator

* this is the well-known cotan formula due to Pinkall and Polthier

* For a vertex,
(Af) = Y, oty + cot (i~
JEN,
[1993]. Normalizing, we obtain the discrete LBO
(Af), ~ %{’w‘? = 21141- jeZN. (cota; + cot B)(f. — f)

1

1
where A; = 3 Z A, , and A, is the area of triangle k incident on i
keT,

J



The Laplace Beltrami Operator

Now as a matrix

« The not-so-symmetric cot based LBO, L, is
( cot(a;) + cot(f;)
o for j € N;
ij _zkeNiLik for j =i j
L 0 otherwise




Smoothing

A shootout between several methods!

* We now have two discrete Laplace operators and many ways to use them

« Explicit smoothing: P’ = (I + AL)P

Implicit smoothing: (I — AL)P' = P
Taubin’s method: P’ = (I — uL)(I1 + AL)P

Constrained Laplacian smoothing: smooth only in tangent plane

Geodesic smoothing: smooth in a log map

Feature preserving smoothing: very different, other trade-offs
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Smoothing with the LBO (mean curvature)

A =3, iterations = 1 (implicit), time = 2.1 seconds
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Smoothing with the LBO (mean curvature)

A =3, iterations = 1 (explicit), time = 2.1 seconds
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Umbrella vs LBO

Left: Umbrella, A = (.25, iter=250, time = 0.11 seconds
Right: LBO, 4 = 100, iter=1 (implicit), time = 2.1 seconds

Mesh structure much

better preserved
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TAL Smoothing + Optimization

A =1, iterations = 20+ (convergence

e Here TAL smoothing
was combined with
maximization of
minimum angle
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Geodesic Smooth

A= 0.5, iterations = 20

ing

= 20.9 seconds

ime

t

e Smoothing of noisy mesh
but constrained to
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Bilateral Normal Filterin

iterations = 50, time = 21.3 seconds

 Bilateral filtering of normals of
adjacent faces, followed by
vertex refitting '

 Note that this
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Mesh Parametrizat

What if | want a global map of a shape?
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Mesh Parametrization

Such as this!

« The mapping should ,

establish an invertible 1-1
map

| S,
» We also want preservation e
. . e e )
of certain properties e
« angles e
. areas s

« Can you guess what is
not preserved here?




Mesh Parametrization
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Least Squares Conformal Maps

» Angles are preserved (in the LS sense) by the mapping to 2D (u,v)

* We can express the conformal energy

E-(u) = Ep(u) — A(u)

1
. Where £, = 5[ || Vul||dA is the Dirichlet energy and A is the area of the map.
S

E}, is minimized by harmonic functions Au = 0

Gradient of triangle areas imposed as boundary constraints

Two vertices must be fixed



Welcome to MeshEdit
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expp : IM —-> M

e The Riemannian exponential,
expp(1v) = y(1), where ||v]| = 1

maps a tangent vector in direction v onto the
same length, ¢, of a geodesic, y

A geodesic is the
generalization of a straight
line to a curved surface:
the curve of constant
bearing

The shortest path between
two points are always
geodesics, but two points
can be connected by
multiple geodesics




The Discrete Exponential Map

A Map between a 2D domain and a 3D surface

« The discrete exp maps from a tangent plane to
the surface

» The discrete log map is the inverse:

e used to map a checkerboard texture
from the tangent plane to the surface

* This provides a way to sample a surface
consistently up to rotation

« Computation similar to Dijkstra’s algorithm:
[Melvaer and Reimers. Geodesic polar coordinates on
polygonal meshes. Computer Graphics Forum, 31(8), 2012 ]



LBO Matrix

e The symmetric cot based LBO:
( cot(a;;) + cot(f;;)
: : for j € N,
. 2, JAA;
] .
_zkeN,-Lik for j =i
L 0 otherwise
where A; is the area of triangles incident on vertex i




LBO Eigenvectors



Example Shape

The Asian Dragon

>




LBO Eigenvectors




ctor: 10

LBO Eigenvectors




eigenvector : 100 LBO EigenveCto rS




eigenvector : 999 L B O E i g e nveCto S




LBO eigenvectors

Technicalities

 The LBO is a huge matrix, but:
» Typically, we need only a subset of the eigenvectors

 Power methods can find a subset for the largest eigenvalues

* \We need the smallest, though ...

« Solution: compute eigenvalues and eigenvectors for L}

 The Spectra library provides a modern Eigen compatible interface



Spectral Analysis

The Fourier Transform but for Meshes

« Let @ be a basis of LBO eigenfunctions for a given mesh, i.e. L = OAD,
where A is a diagonal matrix of eigenvalues

 We can now transform a function

f=of
 And get it back
f=@f

* Note: we can set entries of f to zero / perform other manipulations



4 eigenvectors

Spectral Analysis and Reconstruction




31 eigenvectors

Spectral Analysis and Reconstruction




301 eigenvectors

Spectral Analysis and Reconstruction

/




1000 eigenvectors

Spectral Analysis and Reconstructjon

y

e




Example Shape

Spectral Analysis and Reconstructjon







Suspect Lineup
Experiment: Project XYZ vectors onto LBO

eigenvectors. Then double contribution from
precisely one eigenvector




Shape Analysis Using the
Auto Diffusion Function

Geodesic disc of
radius r has small
perimeter

Geodesic disc of
radius r has large
perimeter




the Auto diffusion function

From the heat kernel,

N
htxy) =) e D D,
i=0
we now define
N
ADF,(x) = ) e ¥ha?,
i=0

which is simply a function that describes how much
[quantity subyj. to diffusion] is left at x at time ¢

Gebal, K., et al. "Shape analysis using the auto diffusion
function." Computer Graphics Forum. Vol. 28. No. 5.



The Auto Diffusion function

1/128 1/32 1/8 1/2 2
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Reeb skeletons based on the ADF

Biasotti, Silvia, et al. "Reeb
graphs for shape analysis
and applications." Theoretical
computer science 392.1-3
(2008): 5-22.



Related to

correspondence and Symmetry Sun, Jian, Maks Ovsjanikov,
. and Leonidas Guibas. "A
Detection

concise and provably
informative multi-scale
signature based on heat
diffusion." Computer graphics
forum. Vol. 28. No. 5.




Functional Maps

« Given corresponding functionsfi, gi on meshes
M, and M,, respectively, and a

« basis of eigenvectors ® and I s.t.
fl=df and g' = I'§’

. We seek C such that ' = Cfi, SO

:A N
b= N
K5
N

M@‘?ﬂ )
e
G =T'Co'F, e

where F'. =f’ and G . = g’ Ovsjanikov, Maks, et al. "Functional
'L 'l maps: a flexible representation of maps
between shapes." ACM Transactions on
Graphics (TOG) 31.4 (2012): 1-11.




Functional Maps

.
#Y |
.’7%5

. We find f*, g’ by
« placing corresponding landmarks on M, and M,

e associating a set of heat kernels with each
landmark

» Secret sauce:

N SL AN
g

s
LN

 the delta functions should match
* Use ICP in eigen-coefficient space

» Use close to isometric shapes




Optimized




\.
k.

© 4

Q -

=
=
—

——

T

d

———

imize

Un-Opt




Part 2

In which we encounter skeletons, implicits, and distance fields



Skeletonization of 3D Meshes




Aka first non-constant

Fiedler Vector s

Operator




Mesh as Graph
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Separators from Fiedler vector

.
i i s
s e
« Using algorithm similar to u 0
Dijkstra’s we visit all vertices | A3
in order of Fiedler vector ' ey
value
ey Mg et o
* For specific time steps, ol : PO et
we output the frontas "¢ - T
a selection of vertices 4

(color coded)



Skeleton

~__
/T
/
e
* A skeleton is trivially \/\ \
computed by contracting e /
separators obtained from \
front sets. Y, \ l
1 \ ‘
_ l \ / N
 The skeleton is not L. / /

satisfactory /
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N
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Repeat the process for
several eigenvectors of the
Laplace-Beltrami
eigenvector

Results are increasingly
hopeless ...



&

« We can significantly
Improve the skeleton by
packing separators from a
variety of eigenvectors
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Computing Local Separators

4\
b

Local separators are separators
of a subgraph. In practice, we
grow a cluster of vertices and

a separator is found when the
front breaks into two components



Skeleton from Local Separators

~/
Ve



}

Works in
PyGEL

[

4.?%”,

A=
14 .}f.\!\ P.@an e ..

Local Separators




Skeleton from Local Separators

Works in
PyGEL

(—————

~
_ @

/\

/
I
/
I
1

AB and Eva Rotenberg. “Skeletonization
via Local Separators”. In: Transactions on
Graphics (2021). Accepted for publication.



Skeletons Compared
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Local separators

LBO Eigen vector skeleton



Topology

 Each edge not in a spanning tree corresponds
to a loop in the graph

e Thus, the skeleton provides both geometric
and topological information



Topology

Three ways to describe topology

Homeomorphism Homotopy equivalence
There is a 1-1, onto, invertible Two shapes are homotopy
Mapping between equivalent if one can be smoothly
homeomorphic shapes deformed into the other

f

.
X

b &

Edelsbrunner, Herbert, and John Harer.
Computational topology: an introduction.
American Mathematical Soc., 2010.

Homology

Establishes ways to distinguish
classes of cycles



An Implicit Surface

* Implicit surfaces are simply functions of the form
fiR >R

« The surfaceis § = {X | f(x) = O}

« We askthat Vf#0on S

* It is easy to compose implicits as a sum of basis
functions

fx) =) 6%,

i
where e.g. 0(X) = k; eXp(XTMiX), k; is a constant,
and M, is a positive definite 3 X 3 matrix



An Implicit Surface

« Setting M = I, we get result on the right

 This is done in Blender
(&)

e They are called “Metaballs” in Blender

Blinn, James F. "A generalization of

algebraic surface drawing." ACM 0

transactions on graphics (TOG) 1.3
(1982): 235-256.



An Implicit Surface

 Now with two implicits and one moving
around.

* The blending shows clearly

 No - | don’t really know that they are
Gaussian’s but that is what Jim Blinn
used.

Blinn, James F. "A generalization of
algebraic surface drawing." ACM
transactions on graphics (TOG) 1.3

(1982): 235-256.




Discrete Distance Field

Given a surface, S, a distance field of
that surface is a function: ds(x,y,z)

ds(x,y,z) = 0 on surface
ds(x,y,z) <0 inside
ds(x,y,z) > 0 outside

ds is a discrete distance field if it is sampled




Properties

e Defining Propery: The gradient is unit length

V|| =1

e The Mean Curvature (of an isocontour) is simply the
divergence of the gradient/Laplacian/trace of the Hessian

0%d,

ox?

0%d,
0y?

0%d,

072

Jones, Mark W., J. Andreas Baerentzen,
and Milos Sramek. "3D distance fields: A
survey of techniques and applications."
IEEE Transactions on visualization and
Computer Graphics 12.4 (2006): 581-599.



Distance Field Variations

e Scalar field. Sometimes our distance field does not
contain actual distance values: we can usually fix that.

e Signed vs unsigned. An unsigned distance field provides
no inside-outside information

 TSDF. Truncated Signed Distance Fields only inform us of
the distance in a narrow band around the surface



Applications

Distance fields are
generally the representation
of choice for surface
reconstruction

Distance Fields can be used for dynamic surfaces, i.e. level set representation

AL




Computing Distance Fields

e From triangle meshes
e From a set of voxels

 From an existing scalar field



Triangle Mesh to Distance Field

e Input:

e Triangle Mesh M, Bounding hierarchy B(M), Voxel grid G
e Qutput: distance field D
e For each voxel vin G:

e |[ocate closest triangle: t = B.closest(v)

e compute D[v] = t.dist(v)

Works in
PyGEL



From Scalar Field to
Distance Field

e Given a scalar field, ®, we iteratively solve

dod
r + s(Pp)(|[VP|| - 1) =0

e where
X
s(x) =
VX2 + €2
e Note: it is import to compute the gradient in the upwind
direction.

Jones, Mark W., J. Andreas Baerentzen,
and Milos Sramek. "3D distance fields: A
survey of techniques and applications."
IEEE Transactions on visualization and
Computer Graphics 12.4 (2006): 581-599.



From Binary Voxels to Distance Field

 Starting from a binary voxel grid, the reinitialization method might be slowish.

* Try the Fast Marching Method (FMM)
 The FMM is based on Dijkstra’s shortest path algorithm...

» to be precise it is Dijkstral!



Techniques for Polygonization

* Find 2D contours and connect
* Grow triangles on the surface
e Divide space into cells, approximate surface in each cell

 Primal vs dual methods



Isosurface Polygonization

marching cubes is the
most common method.

Polygonization cell is
a cube of eight voxels

Pro: manifold

Con: Ugly triangles




Marching Cubes

 For each cube:

Compute table index

Pick triangle configuration

Place vertices on isosurface!

Optional: Interpolate gradients
to get surface normal

Lorensen, William E., and Harvey E.
Cline. "Marching cubes: A high resolution
3D surface construction algorithm." ACM
siggraph computer graphics 21.4 (1987):
163-169.

SISV

10

13

S

14

2



Marching Cubes ambiguity

e Some configurations are ambiguous

 We must select consistent tables




Dual Contouring

 In dual contouring, we make a
box around each voxel.

* If neighboring voxel has opposite
sign, we emit shared face

 Then we project onto the
iIsosurface

e and split quads into triangles




Dual Contouring

 In dual contouring, we make a
box around each voxel.

* If neighboring voxel has opposite
sign, we emit shared face

 Then we project onto the
iIsosurface

e and split quads into triangles




Dual Contouring

Placing vertices

 In DC vertices are not constrained to edges

« Additional freedom avoids most poorly
shaped triangles




Dual Contouring

Placing vertices

 In DC vertices are not constrained to edges

« Additional freedom avoids most poorly
shaped triangles

* Placing vertices:

1. smooth mesh



Dual Contouring

Placing vertices

 In DC vertices are not constrained to edges

« Additional freedom avoids most poorly
shaped triangles

* Placing vertices:

1. smooth mesh

2. compute normal for each vertex



Dual Contouring

Placing vertices

 In DC vertices are not constrained to edges

« Additional freedom avoids most poorly
shaped triangles

* Placing vertices:
1. smooth mesh
2. compute normal for each vertex

3. sample both directions along normal



Dual Contouring

Placing vertices

* In DC vertices are not constrained to edges

B~ W N

Additional freedom avoids most poorly
shaped triangles

Placing vertices:

. Smooth mesh
. compute normal for each vertex
. sample both directions along normal

. move vertex to intersection



Original distance field model



Cuberille meshing
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Dual of cuberille
meshing.
Marching cubes
vertex placement




Dual of cuberille
meshing.
Marching cubes
vertex placement.
Triangulated




Basis Function Summation

How do we reconstruct from a point cloud already?!

 Robust and easy:
» Create a distance field by summing a basis function for each point
* Run dual contouring to get a mesh

« Or more likely: use the widely available Poisson reconstruction code



Basis Function Summation

® For each voxel, v, locate points p; with
normal n; within sphere of given radius

® Compute plane distance and square

Euclidean distance for each point:
dp.n(x) =n" (x — p)
wp(x) = exp(—afx - pl*)

® Compute sum of Gaussian weighted
plane distances for each voxel:

Zz’ Wp, (X) dp'i;ni (X)
Ei Wp; (X)

d(x) =

"o

/1\

o'

fo

%

o0
Ae)
<0
PEQ)
pe
"o
o)
O




Basis Function Summation

NS

® For each voxel, v, locate points p; with

normal n; within sphere of given radius

W8 A

® Compute plane distance and square
Euclidean distance for each point:

dpn(x) =1’ (x — p)
wp(x) = exp(—afx — p||?)

® Compute sum of Gaussian weighted
plane distances for each voxel:

d(x) = 2 wg (Z(U)pd&;lz (%)




BFS: Implementation

e \We could use a kD-tree to find the points closest to each
voxel, but it is too slow

e Instead, loop over a region of the volume close to each
point.

e For each voxel in that region add the weighted distance
to one volume and the weight to another volume

e In a final pass, divide each voxel in the volume containing

the distance sums by the corresponding voxel in the weight
sum volume.



Screened
Poisson vs BFS

Kazhdan, Michael, and Hugues Hoppe.
"Screened poisson surface
reconstruction." ACM Transactions on
Graphics (ToG) 32.3 (2013)




Screened
Poisson vs BFS

R ™ e o T
LA et e »




BFS




Combinatorial

Digne, Julie, et al. "Scale space meshing
of raw data point sets." Computer
graphics forum. Vol. 30. No. 6.




Poisson




https://github.com/janba/GEL
GEL and PyGEL https://pypi.org/project/PyGEL3D/

http://www2.compute.dtu.dk/projects/GEL/PyGEL

 GEL is a C++ library of geometry processing tools including (but not limited to)
* a half-edge based polygonal mesh,
* a graph data structure, and
e various spatial data structures
« PyGEL
» a set of Python bindings for core features in GEL
* has its own viewer based on OpenGL

* PyGEL can be used from Jupyter notebooks (Also Google Colab)



0 Not Secure — www2.compute.dtu.dk ¢ © (I] + [E]

VoxelRay Volume Rendering Program

e ANt
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Thanks

Do you have any questions?
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3D Example

L

» Given a vector p in 3D, we can multiply p
onto basis [XYZ]T

* From the vector in this basis, we can get
back p by multiplying onto [XYZ]

e |f we set some coefficients to zero, we

project p onto a space of lower dimension



Eigensolutions 1D Laplacian

« We are looking for solutions to Le; = Ae; il Lt

scipy.linalg.eigh

) j=i
« where L=+ 1 j=ixl
O otherwise



0.1

0.05

—0.05

-0.1

A

100

200

300

eigenvalue:1.7e-16
eigenvalue:-0.00034
eigenvalue:-0.00034
eigenvalue:-0.0013
eigenvalue:-0.0013



Spectral Smoothing

We can now project our signal onto the basis of
eigenvectors (analysis)

p=ep

and reconstruct simply by

Note that p is actually a matrix of dimension Nx2,
so we treat the vertices in parallel

Entries of P can be set to zero. o
) ) . Head (blue) and reconstruction using
This corresponds to removing frequencies. seven eigenvectors (frequencies) (purple)



n Y =nx X

Pk

Say we

have a

linear
function X

_ P; — Pq
Ip; — Pill

Closely following
Polygonal Mesh Processing by
Botsch et al. CRC Press, 2010

1

Y5 — Yk Y — Yi Yi — Yj
ZUk;—QJj T, — Tk CUj—ZCZ'

Now, we need to solve

0—1
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0—1
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