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Introduction to Meshes and 
Geometry Processing
Shape tools that might be useful for geometric deep learning



Multi-Layer Perceptron

• An MLP computes the value of a function: 
 




• Where  is the non-linear activation 
function, and  are the learned weights


• Why is this powerful?
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Convolutional Neural Network

• Now, groups of pixels form inputs to 
the MLP, turning it into a filter


• By design this filter has 


• translational equivariance 


• but not rotational equivariance  

• Now, data is not always on a regular 
grid…



Geometry

• Now it is not so easy to define convolutions …


• Why do we care? We might


• have a shape space: each shape is a point


• Recognition, classification, synthesis


• want to learn a function on the surface


• segmentation


• mapping between shapes


• position of fiducial/annotation points.



Geometry
Can come in many guises

Surface/mesh

Image

Graph

Skeleton

Implicit/distance field/

Voxels



GEL and PyGEL https://github.com/janba/GEL 
https://pypi.org/project/PyGEL3D/ 
http://www2.compute.dtu.dk/projects/GEL/PyGEL

• GEL is a C++ library of geometry processing tools including (but not limited to)


• a half-edge based polygonal mesh, 


• a graph data structure, and 


• various spatial data structures


• PyGEL 


• a set of Python bindings for core features in GEL


• has its own viewer based on OpenGL


• PyGEL can be used from Jupyter notebooks (Also Google Colab)



Who are you !?
The intended audience for this presentation

• Students with a good background in 


• engineering math


• machine learning


• computer programming


• The bits that can be directly reproduced in  
the PyGEL framework are labelled as shown:


• in search of a “swiss army knife” of methods for geometry processing that 
can be used for geometric deep learning.

Works in 
PyGEL



Overview
Declaration of contents
• Part 1


• Introduction to mesh data structures


• Mesh simplification and optimization


• Discrete log map and exp map


• Linear functions on meshes and the Laplace Beltrami Operator


• Smoothing, parametrization, spectral analysis, and functional maps


• Part 2


• Skeletons and topology


• Implicit functions and distance fields


• Volumetric Reconstruction



Part 1
Meshes, mostly, and the operators that work on them



Polygonal Meshes
Triangle meshes to be honest

• A common representation


• Efficient for computer graphics


• Usually the end result of optical 
acquisition processes


• Because acquired: noisy


• Mesh vertices can be seen as grid 
points and used to store function values


• Each mesh has its own connectivity



Representation of Polygonal Meshes
How do store a mesh in a computer system?!

• Indexed face Set


• Edge-based data structures



Indexed Face Set

0
1

2 3 4 5

6 7
8 9

10

  VERTICES  
  0:   (-0.2, 1.5, 0)
  1:   (1.3, 1.7, 0)
  2:   (-1.1, 0.4, 0)
  3:   (0.0, 0.45, 1)
  4:   (1.1, 0.5, 1.2)
  5:   (2.1, 0.75, 0.2)
  6:   (-1.2, -1,0.01)
  7:   (-0.3, -1.2,2)
  8:   (1.3,-0.9, 3)
  9:   (2.0 -0.8,1.2)
10:  (0.4, -2.1, -1.1)

FACES
0:  0,2,3
1: 0,3,4,1
2: 1,4,5
3: 2,6,7,3
4: 3,7,8,4
5: 4,8,9,5
6: 6,10,7
7: 7,10,8
8: 8,10,9

AB, et al. Guide to computational geometry processing: foundations, 
algorithms, and methods. Springer Science & Business Media, 2012.



Half Edge 
(Hmesh) 

h.previous
h.next

h.opposite

h.face

f.halfedge

v.halfedge

h.vertex

AB, et al. Guide to computational geometry processing: foundations, 
algorithms, and methods. Springer Science & Business Media, 2012.



Manifolds

• An -manifold is everywhere locally mappable to 


• A manifold is covered by charts, , forming an atlas,  
where  is a homeomorphism, i.e.


• one-to-one and onto


• continuous with continuous inverse


• A manifold can be embedded in a space of higher dimension


• When we think of surfaces, we often think of 2-manifolds embedded in 


• We often need maps from the 2-manifold into a 2D parametrization and back

n ℝn

ϕ : M → U ⊂ ℝn {ϕ}
ϕ

ℝ3



Half Edge Mesh and Manifoldness

• A mesh is a 2-manifold if


• Every edge is adjacent to two triangles


• Triangles incident on a vertex form a single fan


• The half edge representation can only represent manifold meshes


• … along with meshes that 
are not manifold but close 
enough …

Manifold with boundary Not manifold, but we  
can deal with it



Edge Collapse

Vertex Split

Edge !ip

Face split Edge Split

Vertex Move

Triangle
Subdivision

Quadrilateral
Subdivision

Things we can do with a mesh

And more ...



Simplifying by Collapsing 
Edges

Edge Collapse

Vertex Split



Original



Simplified using

33000 random collapses



Simplified using

33000 judicious collapses



Edge Collapse Simplification

4 1 Simplifying and Optimizing Triangle Meshes

greedy strategy More recently, attention has been turned to other methods which are based
on creating periodic parametrizations of the triangles meshes based on vector
fields such as those produced by the principal curvature directions. A good
example of such a method is QuadCover by Kälberer et al. [?]. The advantage
of these methods is that they produce quad meshes that align well with the
symmetry directions of the object and generally have an appearance similar
to meshes that have been created by a human designer.

However, when it comes triangle mesh simplification, a relatively early al-
gorithm due to Garland and Heckbert is still much used [?]. Instead of remov-
ing a vertex along with its incident faces, the vertex is removed by merging it
with a neighboring vertex thus collapsing their shared edge (cf., Section ??).
In fact, this operation can more generally be seen as merging any two vertices
in which case topological changes are still possible, but in most cases we only
merge connected vertices and often explicitly disallow a merge if the topology
would change.

1.1.1 Simplification by Edge Collapses

When performing mesh simplification we generally wish to reduce the com-
plexity of the model while preserving the geometry as much as possible. In
the context of a method based on edge collapse, a greedy strategy would be
to always choose the edge collapse which has the least impact on geometry
and to go on until the simplification goal has been reached. Thus, we need
a cost function which tells us how much the geometry changes for a given
edge collapse. With such a cost function, we can perform mesh simplification
using Algorithm ??. This algorithm requires a priority queue, which is an

Algorithm 1 Mesh Simplification
1. For each edge we store the cost of a collapse in a priority queue.
2. Extract the collapse which is cheapest and perform it. This removes an edge along with

its adjacent triangles. Its two vertices are merged into a single vertex, possibly with a
new position.

3. Recompute the collapse cost for all edges a↵ected by the collapse and update their
position in the priority queue.

4. Until the stop condition is met, we go to 2.

o↵-the-shelf data structure. However, a banal but tricky issue is that we need
to update the entries in the priority queue in Step 3. A simple alternative is
to put a time stamp on the edges. When an edge cost is updated, we update
the time stamp and put an entry with the new time stamp in the priority
queue. When an element is extracted from the queue, we discard it if the
time stamps do not match.

10%

Works in 
PyGEL

AB, et al. Guide to 
computational geometry 
processing: foundations, 
algorithms, and methods. 
Springer Science & 
Business Media, 2012.



Optimizing by Edge Flipping

Edge !ip

Edge !ip



Degeneracies can arise

This edge is flipped

Edge is double after flip

We cannot flip an edge if either end-point is valence 3 
(or 2 at the boundary)



1.2 Triangle Mesh Optimization by Edge Flips 11

Algorithm 2 Mesh Optimization
1. Initially, �F is computed for all edges, and for each edge e a pair < �F (e), e > is

inserted into a priority queue if �F (e) < 0.
2. The next step is a loop where we iteratively extract and remove the record with the

�F corresponding to the greatest decrease in energy from the heap and flip the corre-
sponding edge.

3. After an edge flip, �F (e0) must be recomputed for any edge e0 if its �F (e0) has changed
as the result of e being flipped.

4. The loop continues until the priority queue is empty.

�F = �(smallest angle after flip� smallest angle before flip). (1.13)

Note that in this case �F is only the local change in energy. Unless, the
smallest of the six angles happens to be the globally smallest angle, the
energy of the entire mesh is una↵ected. Never the less, if the algorithm is run
until no more local changes can be made, the mesh is Delaunay.

Having performed the flip, we need to update �F (e0) for any edge e
0

belonging to the two triangles which share the flipped edge e.
An important aspect of this algorithm is that it also works quite well on

meshes which are not planar, and in Figure 1.3 we see the result (bottom
left) of applying the method to a simplified bunny where the connectivity
has been corrupted by random edge flips (shown top right). The result is,
in fact, very similar to the original model (top left) but near the bottom
of the model, we notice that the silhouette has become a bit jagged. This is
unsurprising because in a sense our energy only takes the triangle quality and
not the mesh quality into account. [[[A citation or argument that the above
algorithm actually produces a Delaunay triangulation is needed.]]]

1.2.1 Energy Functions based on the Dihedral Angles

Fig. 1.6 Edge Configurations: A triangle mesh approximates a surface with a sharp bend.
On the left an edge is transverse to the bend. On the right an edge flip has been performed,
and the new edge follows the bend.

Maximizing the minimum angle improves triangle quality but not neces-
sarily the mesh geometry. Consider Figure 1.6 where points are sampled near

Mesh Optimization

AB, et al. Guide to computational geometry processing: foundations, 
algorithms, and methods. Springer Science & Business Media, 2012.



Examples of Energy 
Functions

• Maximize minimum angle. Makes mesh Delaunay


• Minimize absolute dihedral angle (times length)


• This is really curvature minimization


• Minimize dihedral angle raised to some power.



Mesh Optimization

Original 10% Connectivity perturbed

Works in 
PyGEL



Mesh Optimization

Original 10% Maximized min angle

Works in 
PyGEL



Mesh Optimization

Minimized dihedral angle 10% Maximized min angle

Works in 
PyGEL



Mesh Optimization

Minimized dihedral angle Both Maximized min angle

Works in 
PyGEL



Linear Functions on Triangle Meshes
A practical example	

•  is stored as a value per vertex


• Linearly interpolated for visualization


• Down and dirty with PyGEL:

f

from pygel3d import hmesh, graph, gl_display as gl

from numpy import array

from math import cos


m = hmesh.load("armadillo-very-simple.obj")

g = graph.from_mesh(m)

P = m.positions()

V = gl.Viewer()

f = array([ cos(P[v][2]*P[v][1]/500) for v in m.vertices()])

V.display(m,g,mode='s',data=f)

Works in 
PyGEL



Linear Functions on Triangle Meshes
Barycentric coordinates
• Given a function, , defined on the vertices of a triangle mesh,


• we use barycentric coordinates to extend it to any point, i.e. 
 

 , where 


•   and


• 


• Barycentric coordinates 


• are easy to compute as a ratio of triangle areas


• can be used to interpolate quantities stored at vertices


• , , and  are functions of  and form a linear basis

f

f(x) = bi fi + bj fj + bk fk

x = bipi + bjpj + bkpk

bi + bj + bk = 1

bi(x) bj(x) bk(x) x

i

kj

x



Linear Functions on Triangle Meshes
The Umbrella Operator

• The umbrella applied to  is 
 

  , where  are the neighbors of vertex ,


• as a matrix product,   

 ,   where .

f

(Δf )i =
1

|Ni | ∑
j∈Ni

fj − fi Ni i

(Δf )i = (Lf )i Lij =

1
|Ni |

j ∈ Ni

−1 j = i
0 otherwise



Linear Functions on Triangle Meshes
The Umbrella Operator

• Let  be an  matrix of vertex positions


• We can compute new positions thusly:  
 




• Umbrella applied to the vertex positions  smoothing


• Note: this is just replacing vertex with avg. of neighbors!


• Note: we could have applied this to other functions than 
vertex position!

P n × 3

P′￼ = (I + L)P

→

P

(ΔP)i

P′￼



Linear Functions on Triangle Meshes
The Umbrella Operator

• In 1D: 


• In 2D,   and on a grid: 

 
 

 
             


• The umbrella operator is an approximation of the Laplacian

f′￼′￼(0) ≈ f(1) + f(−1) − 2f(0)

Δf ≈
∂2f
∂x2

+
∂2f
∂y2

Δf(x, y) ≈ f(x + 1,y) + f(x − 1,y) + f(x, y + 1) + f(x, y − 1) − 4f(x, y)

= ∑
(a,b) ∈N(x,y)

f(a, b) − f(x, y)

x + 1,yx − 1,y

x, y + 1

x, y − 1

x, y



The Laplace Beltrami Operator
Enter the parametrization

• The umbrella operator assumes neighbors distributed 
evenly on unit disk in the parameter domain, but


• The Laplace Beltrami Operator includes the surface 
metric in its definition: 
 

  

 
where  is the surface metric


• If  is isometric, 

Δf = ∇ ⋅ ∇f =
1

|gij |
∂i ( |gij | gij∂j f)

gij = xi ⋅ xj

x gij = I

u

v

x(u, v)
xu

xv

AB, et al. Guide to computational geometry processing: foundations, 
algorithms, and methods. Springer Science & Business Media, 2012.



The Laplace Beltrami Operator
Green’s First Identity 

• Consider the projection of  onto a basis function  (linear “tent” - one for each vertex)  
 

 


• Plugging into G.F.I. 
 




• Note: inner products are 

  and 

Δf ψ

⟨Δf, ψi⟩ = ∑
k

⟨Δf, ψi⟩Tk

∑
k

⟨Δf, ψi⟩Tk
= ∑

k

⟨N ⋅ ∇f, ψi⟩∂Tk
− ∑

k

⟨∇f, ∇ψi⟩Tk
= − ∑

k

⟨∇f, ∇ψi⟩Tk

⟨ f, g⟩ = ∫A
fg dA ⟨X, Y⟩ = ∫A

XTY dA

Crane, Keenan. "Discrete differential geometry: An applied introduction." Notices of the AMS, Communication (2018): 1153-1159.



The Laplace Beltrami Operator
Expressing  in terms of the basisf

• Requiring that  
 




• We obtain: 
 

f = ∑
j

fj ψj

∑
k

⟨∇f, ∇ψi⟩Tk
= ∑

k ⟨∇ ∑
j

fj ψj , ∇ψi⟩
Tk

= ∑
k

∑
j

fj⟨∇ψj , ∇ψi⟩Tk



The Laplace Beltrami Operator
Gradients

• The gradient of a linearly interpolated  is 
constant over each triangle:


, 


where   and  
 
Likewise for  and 


• Note: 

f

∇f(x) = fi ∇bi + fj ∇bj + fk ∇bk

∇bi = R90
ei

2A
2A = hi∥ei∥

bj bk

ei + ej + ek = 0 ⟹ ∇bi + ∇bj + ∇bk = 0

i

kj

x

ei

ek ej
hi



The Laplace Beltrami Operator
Computing the inner products

• So what is  ?


• If   but both  and  are in  
 

 


• Hence, for each triangle 
 




• And 
 

⟨∇ψj, ∇ψi⟩Tk

i ≠ j i j Tk

∇ψi ⋅ ∇ψj = (R90
ei

2A ) ⋅ (R90
ej

2A ) = −
ei ⋅ −ej

2A∥ei × −ej∥
= −

cos β∥ei∥∥ej∥
2A sin β∥ei∥∥ej∥

= −
cot β
2A

⟨ψi, ψj⟩Tk
= ∫Tk

−
cot βij

2A
dA = −

1
2

cot βij

⟨∇ψi, ∇ψi⟩Tk
= − ⟨∇ψi, ∇ψj + ∇ψk⟩Tk

=
1
2

(cot αjk + cot γki)

i

kj ei

ej

βγ

α



The Laplace Beltrami Operator
Assembling the operator

• For a vertex, 
 

 

• this is the well-known cotan formula due to Pinkall and Polthier 
[1993]. Normalizing, we obtain the discrete LBO 
 

 

 

where  ,  and  is the area of triangle  incident on 

⟨Δf, ψi⟩ =
1
2 ∑

j∈Ni

(cot αij + cot βij)( fj − fi)

(Δf )i ≈
⟨Δf, ψi⟩
⟨1,ψi⟩

=
1

2Ai ∑
j∈Ni

(cot αij + cot βij)( fj − fi)

Ai =
1
3 ∑

k∈Ti

Ak Ak k i

i j

αij

βij



The Laplace Beltrami Operator
Now as a matrix

• The not-so-symmetric  based LBO, , is 
 

    

cot L

Lij =

cot(αij) + cot(βij)

2Ai
for j ∈ Ni

−∑k∈Ni
Lik for j = i

0 otherwise

i j

αij

βij



Smoothing
A shootout between several methods!

• We now have two discrete Laplace operators and many ways to use them


• Explicit smoothing: 


• Implicit smoothing: 


• Taubin’s method: 


• Constrained Laplacian smoothing: smooth only in tangent plane


• Geodesic smoothing: smooth in a  map


• Feature preserving smoothing: very different, other trade-offs

P′￼ = (I + λL)P

(I − λL)P′￼ = P

P′￼ = (I − μL)(I + λL)P

log



Original Mesh



Noisy



Laplacian Smoothing
, iterations = 10, time < 0.009 secondsλ = 0.25



Smoothing with the LBO (mean curvature)
, iterations = 1 (implicit), time = 2.1 secondsλ = 3



Smoothing with the LBO (mean curvature)
, iterations = 1 (explicit), time = 2.1 secondsλ = 3



Umbrella vs LBO
Left: Umbrella, , iter=250, time = 0.11 seconds

Right: LBO, , iter=1 (implicit), time = 2.1 seconds

λ = 0.25
λ = 100

Mesh structure much 
better preserved



Taubin Smoothing (w. Umbrella)
, iterations = 20, time = 0.08 secondsλ = 0.5, μ = − 0.52



Tangential Area-Weighted Laplacian Smoothing
, iterations = 20, time = 0.32 secondsλ = 1

• Projects Laplacian into 
orthogonal complement 
of surface normal


• Weights neighboring 
vertices with area


• Improves triangle size 
and shape while not 
changing geometry 
(much)

Note: This does not remove noise 
well. The original mesh was 

smoothed!



TAL Smoothing + Optimization
, iterations = 20+ (convergence)λ = 1

• Here TAL smoothing 
was combined with 
maximization of 
minimum angle



Geodesic Smoothing
, iterations = 20, time = 20.9 secondsλ = 0.5

• Smoothing of noisy mesh 
but constrained to 
original (not noisy) mesh



Bilateral Normal Filtering
iterations = 50, time = 21.3 seconds

• Bilateral filtering of normals of 
adjacent faces, followed by 
vertex refitting


• Note that this  
preserves edges …


• Perhaps too well …



Mesh Parametrization
What if I want a global map of a shape?

• We assume a 
shape with disc 
topology



Mesh Parametrization
Such as this!

• The mapping should 
establish an invertible 1-1 
map


• We also want preservation 
of certain properties


• angles


• areas


• Can you guess what is 
not preserved here?



Mesh Parametrization



Least Squares Conformal Maps

• Angles are preserved (in the LS sense) by the mapping to 2D (u,v)


• We can express the conformal energy





• Where  is the Dirichlet energy and  is the area of the map.


•  is minimized by harmonic functions 


• Gradient of triangle areas imposed as boundary constraints


• Two vertices must be fixed

EC(u) = ED(u) − A(u)

ED =
1
2 ∫S

∥∇u∥dA A

ED Δu = 0



ctrl click to select two 
vertices



Results



• The Riemannian exponential, 
 

, where  
 
maps a tangent vector in direction  onto the 
same length,  , of a geodesic, 

expR(tv) = γ(t) ∥v∥ = 1

v
t γ

expR : TM → M

γ

v

A geodesic is the 
generalization of a straight 
line to a curved surface: 
the curve of constant 
bearing


The shortest path between 
two points are always 
geodesics, but two points 
can be connected by 
multiple geodesics



The Discrete Exponential Map
A Map between a 2D domain and a 3D surface

• The discrete  maps from a tangent plane to  
the surface


• The discrete  map is the inverse:


• used to map a checkerboard texture  
from the tangent plane to the surface


• This provides a way to sample a surface  
consistently up to rotation


• Computation similar to Dijkstra’s algorithm: 
[Melvær and Reimers. Geodesic polar coordinates on 
polygonal meshes. Computer Graphics Forum, 31(8), 2012 ]

exp

log



LBO Matrix

• The symmetric  based LBO: 
 

    , 

 
where  is the area of triangles incident on vertex 

cot

Lij =

cot(αij) + cot(βij)

2 AiAj

for j ∈ Ni

−∑k∈Ni
Lik for j = i

0 otherwise

Ai i

i j

αij

βij



LBO Eigenvectors



Example Shape The Asian Dragon



eigenvector : 1 LBO Eigenvectors



eigenvector : 10 LBO Eigenvectors



eigenvector : 100 LBO Eigenvectors



eigenvector : 999 LBO Eigenvectors



LBO eigenvectors
Technicalities

• The LBO is a huge matrix, but:


• Typically, we need only a subset of the eigenvectors


• Power methods can find a subset for the largest eigenvalues


• We need the smallest, though …


• Solution: compute eigenvalues and eigenvectors for 


• The Spectra library provides a modern Eigen compatible interface

L−1



Spectral Analysis
The Fourier Transform but for Meshes

• Let  be a basis of LBO eigenfunctions for a given mesh, i.e. , 
where  is a diagonal matrix of eigenvalues


• We can now transform a function 
 




• And get it back 
 




• Note: we can set entries of  to zero / perform other manipulations

Φ L = ΦΛΦT

Λ

̂f = ΦTf

f = Φ ̂f
̂f



Spectral Analysis and Reconstruction
4 eigenvectors



31 eigenvectors

Spectral Analysis and Reconstruction



301 eigenvectors

Spectral Analysis and Reconstruction



1000 eigenvectors

Spectral Analysis and Reconstruction



Example Shape

Spectral Analysis and Reconstruction





Experiment: Project XYZ vectors onto LBO 
eigenvectors. Then double contribution from 

precisely one eigenvector

Suspect Lineup



Shape Analysis Using the�
Auto Diffusion Function

r

r

Geodesic disc of 
radius r has small 

perimeter

Geodesic disc of 
radius r has large 

perimeter



the Auto diffusion function

From the heat kernel,

we now define

which is simply a function that describes how much 
[quantity subj. to diffusion] is left at x at time t

h(t, x, y) =
N

∑
i=0

e−tλiΦxiΦyi

ADFt(x) =
N

∑
i=0

e−tλi/λ1Φ2
xi

Gȩbal, K., et al. "Shape analysis using the auto diffusion 
function." Computer Graphics Forum. Vol. 28. No. 5.



The Auto Diffusion function
min max

21/21/81/32

t

1/128



t=1



t=0.1



t=0.01



t=0.002



Reeb graph

Reeb skeletons based on the ADF

f(x)=k

Biasotti, Silvia, et al. "Reeb 
graphs for shape analysis 
and applications." Theoretical 
computer science 392.1-3 
(2008): 5-22.



correspondence and Symmetry �
Detection

Related to 
Sun, Jian, Maks Ovsjanikov, 
and Leonidas Guibas. "A 
concise and provably 
informative multi‐scale 
signature based on heat 
diffusion." Computer graphics 
forum. Vol. 28. No. 5.



Functional Maps

• Given corresponding functions ,  on meshes 
 and , respectively, and a


• basis of eigenvectors  and  s.t. 
 

 and 


• We seek  such that , so 
 

, 
 
where  and 

f i gi

M1 M2

Φ Γ

f i = Φ ̂f i gi = Γ ̂gi

C ̂gi = C ̂f i

G = ΓCΦTF

F⋅i = f i G⋅i = gi

M1

M2

Ovsjanikov, Maks, et al. "Functional 
maps: a flexible representation of maps 
between shapes." ACM Transactions on 
Graphics (TOG) 31.4 (2012): 1-11.



Functional Maps

• We find ,  by 


• placing corresponding landmarks on  and 


• associating a set of heat kernels with each 
landmark


• Secret sauce: 


• the delta functions should match


• Use ICP in eigen-coefficient space


• Use close to isometric shapes 

f i gi

M1 M2

M1

M2



Optimized



Un-Optimized



Part 2
In which we encounter skeletons, implicits, and distance fields



Skeletonization of 3D Meshes



Fiedler Vector
Aka first non-constant 
eigenvector of the  
Laplace-Beltrami  
Operator



Mesh as Graph



Separators from Fiedler vector

• Using algorithm similar to 
Dijkstra’s we visit all vertices 
in order of Fiedler vector 
value


• For specific time steps, 
we output the front as  
a selection of vertices 
(color coded)



Skeleton

• A skeleton is trivially 
computed by contracting 
separators obtained from 
front sets.


• The skeleton is not  
satisfactory



• Repeat the process for 
several eigenvectors of the 
Laplace-Beltrami 
eigenvector


• Results are increasingly  
hopeless …



• We can significantly 
improve the skeleton by 
packing separators from a 
variety of eigenvectors



Computing Local Separators



Computing Local Separators

Local separators are separators  
of a subgraph. In practice, we  
grow a cluster of vertices and  
a separator is found when the 
front breaks into two components



Skeleton from Local Separators



Local Separators
Works in 
PyGEL



Skeleton from Local Separators
Works in 
PyGEL

AB and Eva Rotenberg. “Skeletonization 
via Local Separators”. In: Transactions on 
Graphics (2021). Accepted for publication. 



Skeletons Compared

Local separators LBO Eigen vector skeleton



Topology

• Each edge not in a spanning tree corresponds 
to a loop in the graph


• Thus, the skeleton provides both geometric 
and topological information



Topology
Three ways to describe topology

Homeomorphism Homotopy equivalence Homology
There is a 1-1, onto, invertible

Mapping between 
homeomorphic shapes

Two shapes are homotopy 
equivalent if one can be smoothly 
deformed into the other

Establishes ways to distinguish 
classes of cycles

Edelsbrunner, Herbert, and John Harer. 
Computational topology: an introduction. 
American Mathematical Soc., 2010.



An Implicit Surface

• Implicit surfaces are simply functions of the form 



• The surface is 


• We ask that  on 


• It is easy to compose implicits as a sum of basis 
functions 
 

 ,  

where e.g. ,  is a constant, 
and  is a positive definite  matrix

f : ℝ3 → ℝ

S = {x | f(x) = 0}
∇f ≠ 0 S

f(x) = ∑
i

θi(x)

θi(x) = ki exp(xTMix) ki
Mi 3 × 3



An Implicit Surface

• Setting , we get result on the right


• This is done in Blender


• They are called “Metaballs” in Blender

M = I

Blinn, James F. "A generalization of 
algebraic surface drawing." ACM 
transactions on graphics (TOG) 1.3 
(1982): 235-256.



An Implicit Surface

• Now with two implicits and one moving 
around.


• The blending shows clearly


• No - I don’t really know that they are 
Gaussian’s but that is what Jim Blinn 
used.

Blinn, James F. "A generalization of 
algebraic surface drawing." ACM 
transactions on graphics (TOG) 1.3 
(1982): 235-256.



Discrete Distance Field
• Given a surface, S, a distance field of  

that surface is a function: dS(x,y,z)


• dS(x,y,z) = 0 on surface


• dS(x,y,z) < 0 inside


• dS(x,y,z) > 0 outside


• dS is a discrete distance field if it is sampled



Properties
• Defining Propery: The gradient is unit length


• The Mean Curvature (of an isocontour) is simply the 
divergence of the gradient/Laplacian/trace of the Hessian

∥∇dS∥ = 1

H = ∇ ⋅ ∇dS = ΔdS =
∂2dS

∂x2
+

∂2dS

∂y2
+

∂2dS

∂z2

Jones, Mark W., J. Andreas Baerentzen, 
and Milos Sramek. "3D distance fields: A 
survey of techniques and applications." 
IEEE Transactions on visualization and 
Computer Graphics 12.4 (2006): 581-599.



Distance Field Variations

• Scalar field. Sometimes our distance field does not 
contain actual distance values: we can usually fix that.


• Signed vs unsigned. An unsigned distance field provides 
no inside-outside information


• TSDF. Truncated Signed Distance Fields only inform us of 
the distance in a narrow band around the surface



Applications

Distance Fields can be used for dynamic surfaces, i.e. level set representation

Distance fields are 
generally the representation  

of choice for surface 
reconstruction



Computing Distance Fields

• From triangle meshes


• From a set of voxels 


• From an existing scalar field



Triangle Mesh to Distance Field

• Input: 


• Triangle Mesh M, Bounding hierarchy B(M), Voxel grid G


• Output: distance field D


• For each voxel v in G:


• Locate closest triangle: t = B.closest(v)


• compute D[v] = t.dist(v)
Works in 
PyGEL



From Scalar Field to 
Distance Field

• Given a scalar field, 𝚽, we iteratively solve


• where 


• Note: it is import to compute the gradient in the upwind 
direction.

dΦ
dt

+ s(Φ0)(∥∇Φ∥ − 1) = 0

s(x) =
x

x2 + ϵ2

Jones, Mark W., J. Andreas Baerentzen, 
and Milos Sramek. "3D distance fields: A 
survey of techniques and applications." 
IEEE Transactions on visualization and 
Computer Graphics 12.4 (2006): 581-599.



From Binary Voxels to Distance Field

• Starting from a binary voxel grid, the reinitialization method might be slowish. 


• Try the Fast Marching Method (FMM)


• The FMM is based on Dijkstra’s shortest path algorithm… 


• to be precise it is Dijkstra! 



Techniques for Polygonization

• Find 2D contours and connect


• Grow triangles on the surface


• Divide space into cells, approximate surface in each cell


• Primal vs dual methods



Isosurface Polygonization

• marching cubes is the 
most common method.


• Polygonization cell is 
a cube of eight voxels


• Pro: manifold


• Con: Ugly triangles

+ + + +

+ + - +

+ - - +

+ + + +



• For each cube:


• Compute table index


• Pick triangle configuration


• Place vertices on isosurface!


• Optional: Interpolate gradients 
to get surface normal

Marching Cubes

Lorensen, William E., and Harvey E. 
Cline. "Marching cubes: A high resolution 
3D surface construction algorithm." ACM 
siggraph computer graphics 21.4 (1987): 
163-169.



Marching Cubes ambiguity

• Some configurations are ambiguous


• We must select consistent tables



• In dual contouring, we make a 
box around each voxel.


• If neighboring voxel has opposite 
sign, we emit shared face


• Then we project onto the 
isosurface


• and split quads into triangles

Dual Contouring

+ + + +

+ + - +

+ - - +

+ + + +



• In dual contouring, we make a 
box around each voxel.


• If neighboring voxel has opposite 
sign, we emit shared face


• Then we project onto the 
isosurface


• and split quads into triangles

Dual Contouring

+ + + +

+ + - +

+ - - +

+ + + +



Dual Contouring
Placing vertices

• In DC vertices are not constrained to edges


• Additional freedom avoids most poorly 
shaped triangles



Dual Contouring
Placing vertices

• In DC vertices are not constrained to edges


• Additional freedom avoids most poorly 
shaped triangles


• Placing vertices:


1. smooth mesh



• In DC vertices are not constrained to edges


• Additional freedom avoids most poorly 
shaped triangles


• Placing vertices:


1. smooth mesh 


2. compute normal for each vertex

Dual Contouring
Placing vertices



• In DC vertices are not constrained to edges


• Additional freedom avoids most poorly 
shaped triangles


• Placing vertices:


1. smooth mesh 


2. compute normal for each vertex


3. sample both directions along normal

Dual Contouring
Placing vertices

+

-

+

-



• In DC vertices are not constrained to edges


• Additional freedom avoids most poorly 
shaped triangles


• Placing vertices:


1. smooth mesh 


2. compute normal for each vertex


3. sample both directions along normal


4. move vertex to intersection

Dual Contouring
Placing vertices



Original distance field model



Cuberille meshing



Dual Contouring 
(Cuberille meshing) 
vertices pushed onto 
surface



Dual Contouring 
(Cuberille meshing) 
vertices pushed 
mesh triangulated



Dual of cuberille 
meshing. 
Marching cubes 
vertex placement



Dual of cuberille 
meshing. 
Marching cubes 
vertex placement. 
Triangulated



Basis Function Summation
How do we reconstruct from a point cloud already?!

• Robust and easy:


• Create a distance field by summing a basis function for each point


• Run dual contouring to get a mesh


• Or more likely: use the widely available Poisson reconstruction code



Basis Function Summation
• For each voxel, v, locate points pi with 

normal ni within sphere of given radius


• Compute plane distance and square 
Euclidean distance for each point:


• Compute sum of Gaussian weighted 
plane distances for each voxel:
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compute the weighted sum. Since we would like the weight to decrease with
the distance to a given point, a Gaussian might be a good choice,

wp = exp(�↵kx� pk2) , (20.6)

where ↵ is a scaling factor. Now, the characteristic function is simply

�(x) =

P
i wpi(x) dpi,ni(x)P

i wpi(x)
, (20.7)

where i is an index that runs over all points. Note that wpi(x) = 1 when
x = pi and decreases smoothly (at a rate depending on ↵) as x moves away
from pi. Thus, (20.7) expresses that � should be very much like the distance
to the plane defined by each point-normal pair when we are close to one of the
points, and also that the distance functions are smoothly blended. We divide
by the sum of the weights to achieve a partition of unity which ensures that
� is a weighted average of the individual plane-distances meaning that the
value of (20.7) can be neither smaller nor greater than any of the individual
plane distances.

There is a problem with (20.7), however. We are trying to design an al-
gorithm that is scalable, but if we have millions of points, it is going to be
relatively costly to evaluate this formula. We could change the weight func-
tion such that it is exactly zero outside a predetermined radius of support.
Then, we could use a spatial data structure (e.g. a kD tree) to e�ciently find
the points within this radius. This simple strategy certainly works, but it is
still somewhat ine�cient if we need to evaluate � a great number of times to
determine the surface.

Instead, our strategy is to precompute the value of � at the points of a
regular 3D grid. We can think of this grid as a 3D image, and the 3D pixels
are generally called voxels, and the grid is called a voxel grid or simply a
volume. The notions are illustrated in Figure 20.4. Something that might be
confusing is that we can think of voxels (or pixels) as grid points but also as
little boxes (or squares). So which is it? The best answer seems to be that
we should think about a voxel as a grid point, but we can also think of the
volume as being divided into boxes where the centers are the grid points.
This perspective, is also very useful, and often the boxes are then referred
to as voxels. Admittedly, this is confusing, but sometimes slightly ambiguous
notions are important to deal with, and a voxel is just such a notion.

Using a voxel grid, a fairly e�cient algorithm becomes possible if we clamp
the weight function, wp, to zero outside a given region around p which we
will call the support in the following. For each point-normal pair, (p,n), we
now compute the plane distance, dp,n(x) for all grid points, x, that lie within
the support and add the value to the corresponding voxel in a grid that
represents the sum in the numerator of (20.7). Furthermore, we add wp(x)
to another grid containing the values in the denominator of (20.7).
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[104]. This average is then used as the isovalue for isosurface polygonization
(cf., 18).

The Poisson reconstruction method has the advantage that the theory is
elegant and the intuition is extremely clear: we are looking for a function
whose gradient field matches the point normals. While the isosurface does
not precisely correspond to the theoretically correct surface we would get
by deconvolution, the method makes up for this potential source of error by
representing � adaptively using a hierarchical basis of compactly supported
functions. This is harder to implement but more space e�cient than using
a regular voxel grid. It also allows Kazhdan et al. to compute solutions at
greater precision. In their paper, the octrees used for the hierarchical repre-
sentation have depths of up to 10 which corresponds to a voxel grid resolution
of 10243 [104].

Figure 20.5 compares the method from Section 20.2.2 to screened Pois-
son Reconstruction1. Screened Poisson reconstruction is similar to Poisson
reconstruction but it adds an energy term to the formulation which penalizes
deviation from the isovalue at the points. In other words, screened Poisson
reconstruction ensures that the surface is closer to interpolating the input
points.

20.2.2 Basis Function Summation

The radial basis function method becomes costly for large numbers of points
because it requires that we solve a linear system to find the coe�cients.
Radial basis functions also have the problem that they change equally in all
directions going out from their center precisely because they are radial. If we
use RBFs to approximate a surface, we need to place basis functions both
inside and outside the surface in order to ensure that there is a gradient
perpendicular to the surface which is what we need in order to define a
characteristic function.

This means that we cannot place the radial basis functions on the surface
and instead we need to place them both inside and outside. It turns out to
be more convenient to use basis functions that are oriented and which have
a strong gradient that can be made to align with the normals of the input
points. Now, given a point, p, and an associated normal, n, we can define a
plane, and the distance to this plane is

dp,n(x) = nT (x� p) . (20.5)

dp,n turns out to be a good choice of basis function, but we need a way
to blend the basis functions for all of the points. We can use a weighting
function and then multiply all of the points by their respective weights and

1 Using MeshLab’s implementation: http://meshlab.sourceforge.net/
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compute the weighted sum. Since we would like the weight to decrease with
the distance to a given point, a Gaussian might be a good choice,

wp(x) = exp(�↵kx� pk2) , (1.6)

where ↵ is a scaling factor. Now, the characteristic function is simply

�(x) =

P
i wpi(x) dpi,ni(x)P

i wpi(x)
, (1.7)

where i is an index that runs over all points. Note that wpi(x) = 1 when
x = pi and decreases smoothly (at a rate depending on ↵) as x moves away
from pi. Thus, (1.7) expresses that � should be very much like the distance to
the plane defined by each point-normal pair when we are close to one of the
points, and also that the distance functions are smoothly blended. We divide
by the sum of the weights to achieve a partition of unity which ensures that
� is a weighted average of the individual plane-distances meaning that the
value of (1.7) can be neither smaller nor greater than any of the individual
plane distances.

There is a problem with (1.7), however. We are trying to design an al-
gorithm that is scalable, but if we have millions of points, it is going to be
relatively costly to evaluate this formula. We could change the weight func-
tion such that it is exactly zero outside a predetermined radius of support.
Then, we could use a spatial data structure (e.g. a kD tree) to e�ciently find
the points within this radius. This simple strategy certainly works, but it is
still somewhat ine�cient if we need to evaluate � a great number of times to
determine the surface.

Instead, our strategy is to precompute the value of � at the points of a
regular 3D grid. We can think of this grid as a 3D image, and the 3D pixels
are generally called voxels, and the grid is called a voxel grid or simply a
volume. The notions are illustrated in Figure 1.4. Something that might be
confusing is that we can think of voxels (or pixels) as grid points but also as
little boxes (or squares). So which is it? The best answer seems to be that
we should think about a voxel as a grid point, but we can also think of the
volume as being divided into boxes where the centers are the grid points.
This perspective, is also very useful, and often the boxes are then referred
to as voxels. Admittedly, this is confusing, but sometimes slightly ambiguous
notions are important to deal with, and a voxel is just such a notion.

Using a voxel grid, a fairly e�cient algorithm becomes possible if we clamp
the weight function, wp, to zero outside a given region around p which we
will call the support in the following. For each point-normal pair, (p,n), we
now compute the plane distance, dp,n(x) for all grid points, x, that lie within
the support and add the value to the corresponding voxel in a grid that
represents the sum in the numerator of (1.7). Furthermore, we add wp(x) to
another grid containing the values in the denominator of (1.7).



• For each voxel, v, locate points pi with 
normal ni within sphere of given radius


• Compute plane distance and square 
Euclidean distance for each point:


• Compute sum of Gaussian weighted 
plane distances for each voxel:
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compute the weighted sum. Since we would like the weight to decrease with
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where i is an index that runs over all points. Note that wpi(x) = 1 when
x = pi and decreases smoothly (at a rate depending on ↵) as x moves away
from pi. Thus, (20.7) expresses that � should be very much like the distance
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points, and also that the distance functions are smoothly blended. We divide
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the points within this radius. This simple strategy certainly works, but it is
still somewhat ine�cient if we need to evaluate � a great number of times to
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regular 3D grid. We can think of this grid as a 3D image, and the 3D pixels
are generally called voxels, and the grid is called a voxel grid or simply a
volume. The notions are illustrated in Figure 20.4. Something that might be
confusing is that we can think of voxels (or pixels) as grid points but also as
little boxes (or squares). So which is it? The best answer seems to be that
we should think about a voxel as a grid point, but we can also think of the
volume as being divided into boxes where the centers are the grid points.
This perspective, is also very useful, and often the boxes are then referred
to as voxels. Admittedly, this is confusing, but sometimes slightly ambiguous
notions are important to deal with, and a voxel is just such a notion.

Using a voxel grid, a fairly e�cient algorithm becomes possible if we clamp
the weight function, wp, to zero outside a given region around p which we
will call the support in the following. For each point-normal pair, (p,n), we
now compute the plane distance, dp,n(x) for all grid points, x, that lie within
the support and add the value to the corresponding voxel in a grid that
represents the sum in the numerator of (20.7). Furthermore, we add wp(x)
to another grid containing the values in the denominator of (20.7).
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[104]. This average is then used as the isovalue for isosurface polygonization
(cf., 18).

The Poisson reconstruction method has the advantage that the theory is
elegant and the intuition is extremely clear: we are looking for a function
whose gradient field matches the point normals. While the isosurface does
not precisely correspond to the theoretically correct surface we would get
by deconvolution, the method makes up for this potential source of error by
representing � adaptively using a hierarchical basis of compactly supported
functions. This is harder to implement but more space e�cient than using
a regular voxel grid. It also allows Kazhdan et al. to compute solutions at
greater precision. In their paper, the octrees used for the hierarchical repre-
sentation have depths of up to 10 which corresponds to a voxel grid resolution
of 10243 [104].

Figure 20.5 compares the method from Section 20.2.2 to screened Pois-
son Reconstruction1. Screened Poisson reconstruction is similar to Poisson
reconstruction but it adds an energy term to the formulation which penalizes
deviation from the isovalue at the points. In other words, screened Poisson
reconstruction ensures that the surface is closer to interpolating the input
points.

20.2.2 Basis Function Summation

The radial basis function method becomes costly for large numbers of points
because it requires that we solve a linear system to find the coe�cients.
Radial basis functions also have the problem that they change equally in all
directions going out from their center precisely because they are radial. If we
use RBFs to approximate a surface, we need to place basis functions both
inside and outside the surface in order to ensure that there is a gradient
perpendicular to the surface which is what we need in order to define a
characteristic function.

This means that we cannot place the radial basis functions on the surface
and instead we need to place them both inside and outside. It turns out to
be more convenient to use basis functions that are oriented and which have
a strong gradient that can be made to align with the normals of the input
points. Now, given a point, p, and an associated normal, n, we can define a
plane, and the distance to this plane is

dp,n(x) = nT (x� p) . (20.5)

dp,n turns out to be a good choice of basis function, but we need a way
to blend the basis functions for all of the points. We can use a weighting
function and then multiply all of the points by their respective weights and
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compute the weighted sum. Since we would like the weight to decrease with
the distance to a given point, a Gaussian might be a good choice,

wp(x) = exp(�↵kx� pk2) , (1.6)

where ↵ is a scaling factor. Now, the characteristic function is simply

�(x) =

P
i wpi(x) dpi,ni(x)P

i wpi(x)
, (1.7)

where i is an index that runs over all points. Note that wpi(x) = 1 when
x = pi and decreases smoothly (at a rate depending on ↵) as x moves away
from pi. Thus, (1.7) expresses that � should be very much like the distance to
the plane defined by each point-normal pair when we are close to one of the
points, and also that the distance functions are smoothly blended. We divide
by the sum of the weights to achieve a partition of unity which ensures that
� is a weighted average of the individual plane-distances meaning that the
value of (1.7) can be neither smaller nor greater than any of the individual
plane distances.

There is a problem with (1.7), however. We are trying to design an al-
gorithm that is scalable, but if we have millions of points, it is going to be
relatively costly to evaluate this formula. We could change the weight func-
tion such that it is exactly zero outside a predetermined radius of support.
Then, we could use a spatial data structure (e.g. a kD tree) to e�ciently find
the points within this radius. This simple strategy certainly works, but it is
still somewhat ine�cient if we need to evaluate � a great number of times to
determine the surface.

Instead, our strategy is to precompute the value of � at the points of a
regular 3D grid. We can think of this grid as a 3D image, and the 3D pixels
are generally called voxels, and the grid is called a voxel grid or simply a
volume. The notions are illustrated in Figure 1.4. Something that might be
confusing is that we can think of voxels (or pixels) as grid points but also as
little boxes (or squares). So which is it? The best answer seems to be that
we should think about a voxel as a grid point, but we can also think of the
volume as being divided into boxes where the centers are the grid points.
This perspective, is also very useful, and often the boxes are then referred
to as voxels. Admittedly, this is confusing, but sometimes slightly ambiguous
notions are important to deal with, and a voxel is just such a notion.

Using a voxel grid, a fairly e�cient algorithm becomes possible if we clamp
the weight function, wp, to zero outside a given region around p which we
will call the support in the following. For each point-normal pair, (p,n), we
now compute the plane distance, dp,n(x) for all grid points, x, that lie within
the support and add the value to the corresponding voxel in a grid that
represents the sum in the numerator of (1.7). Furthermore, we add wp(x) to
another grid containing the values in the denominator of (1.7).
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This average is then used as the isovalue for isosurface polygonization (cf.,
??).

The Poisson reconstruction method has the advantage that the theory is
elegant and the intuition is extremely clear: we are looking for a function
whose gradient field matches the point normals. While the isosurface does
not precisely correspond to the theoretically correct surface we would get
by deconvolution, the method makes up for this potential source of error by
representing � adaptively using a hierarchical basis of compactly supported
functions. This is harder to implement but more space e�cient than using
a regular voxel grid. It also allows Kazhdan et al. to compute solutions at
greater precision. In their paper, the octrees used for the hierarchical repre-
sentation have depths of up to 10 which corresponds to a voxel grid resolution
of 10243 [5].

Figure 1.5 compares the method from Section 1.2.2 to screened Poisson
Reconstruction1. Screened Poisson reconstruction is similar to Poisson re-
construction but it adds an energy term to the formulation which penalizes
deviation from the isovalue at the points. In other words, screened Poisson
reconstruction ensures that the surface is closer to interpolating the input
points.

1.2.2 Basis Function Summation

The radial basis function method becomes costly for large numbers of points
because it requires that we solve a linear system to find the coe�cients.
Radial basis functions also have the problem that they change equally in all
directions going out from their center precisely because they are radial. If we
use RBFs to approximate a surface, we need to place basis functions both
inside and outside the surface in order to ensure that there is a gradient
perpendicular to the surface which is what we need in order to define a
characteristic function.

This means that we cannot place the radial basis functions on the surface
and instead we need to place them both inside and outside. It turns out to
be more convenient to use basis functions that are oriented and which have
a strong gradient that can be made to align with the normals of the input
points. Now, given a point, p, and an associated normal, n, we can define a
plane, and the distance to this plane is

dp,n(x) = nT (x� p) . (1.5)

dp,n turns out to be a good choice of basis function, but we need a way
to blend the basis functions for all of the points. We can use a weighting
function and then multiply all of the points by their respective weights and

1
Using MeshLab’s implementation: http://meshlab.sourceforge.net/
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of 10243 [5].

Figure 1.5 compares the method from Section 1.2.2 to screened Poisson
Reconstruction1. Screened Poisson reconstruction is similar to Poisson re-
construction but it adds an energy term to the formulation which penalizes
deviation from the isovalue at the points. In other words, screened Poisson
reconstruction ensures that the surface is closer to interpolating the input
points.

1.2.2 Basis Function Summation

The radial basis function method becomes costly for large numbers of points
because it requires that we solve a linear system to find the coe�cients.
Radial basis functions also have the problem that they change equally in all
directions going out from their center precisely because they are radial. If we
use RBFs to approximate a surface, we need to place basis functions both
inside and outside the surface in order to ensure that there is a gradient
perpendicular to the surface which is what we need in order to define a
characteristic function.

This means that we cannot place the radial basis functions on the surface
and instead we need to place them both inside and outside. It turns out to
be more convenient to use basis functions that are oriented and which have
a strong gradient that can be made to align with the normals of the input
points. Now, given a point, p, and an associated normal, n, we can define a
plane, and the distance to this plane is

dp,n(x) = nT (x� p) . (1.5)

dp,n turns out to be a good choice of basis function, but we need a way
to blend the basis functions for all of the points. We can use a weighting
function and then multiply all of the points by their respective weights and

1
Using MeshLab’s implementation: http://meshlab.sourceforge.net/

Basis Function Summation



BFS: Implementation
• We could use a kD-tree to find the points closest to each 

voxel, but it is too slow


• Instead, loop over a region of the volume close to each 
point.


• For each voxel in that region add the weighted distance 
to one volume and the weight to another volume


• In a final pass, divide each voxel in the volume containing 
the distance sums by the corresponding voxel in the weight 
sum volume.



Screened 
Poisson vs BFS

Kazhdan, Michael, and Hugues Hoppe. 
"Screened poisson surface 
reconstruction." ACM Transactions on 
Graphics (ToG) 32.3 (2013)



Screened 
Poisson vs BFS



BFS



Combinatorial

Digne, Julie, et al. "Scale space meshing 
of raw data point sets." Computer 
graphics forum. Vol. 30. No. 6.



Poisson



GEL and PyGEL https://github.com/janba/GEL 
https://pypi.org/project/PyGEL3D/ 
http://www2.compute.dtu.dk/projects/GEL/PyGEL

• GEL is a C++ library of geometry processing tools including (but not limited to)


• a half-edge based polygonal mesh, 


• a graph data structure, and 


• various spatial data structures


• PyGEL 


• a set of Python bindings for core features in GEL


• has its own viewer based on OpenGL


• PyGEL can be used from Jupyter notebooks (Also Google Colab)





Thanks
Do you have any questions?
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BONUS
Material or junk



3D Example

• Given a vector p in 3D, we can multiply p  
onto basis [XYZ]T


• From the vector in this basis, we can get 
back p by multiplying onto [XYZ]


• If we set some coefficients to zero, we 
project p onto a space of lower dimension



Eigensolutions 1D Laplacian

• We are looking for solutions to 


• where 

Lei = λiei

Lij =
−2 j = i
1 j = i ± 1
0 otherwise

Hint, use: 
scipy.linalg.eigh
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−0.05

0

0.05

0.1
eigenvalue:1.7e-16
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Spectral Smoothing
• We can now project our signal onto the basis of  

eigenvectors (analysis)


• and reconstruct simply by


• Note that p is actually a matrix of dimension Nx2,  
so we treat the vertices in parallel


• Entries of      can be set to zero.  
This corresponds to removing frequencies.

p̂ = eTp

p = ep̂

p̂
Head (blue) and reconstruction using  

seven eigenvectors (frequencies) (purple)



LSCM
Closely following 

Polygonal Mesh Processing by

Botsch et al. CRC Press, 2010

Say we 
have a 
linear 

function

pi

pj

pk

X =
pj � pi

kpj � pik

Y = n⇥Xn

Now,  we need to solve
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