
An Introduction to Equivariant Convolutional

Neural Networks for Continuous Groups
Lecture Notes

dr.ir. Erik J. Bekkers

August 2021

Contents

I Regular Group Convolutions 3

1 Introduction to convolutions 4
1.1 Notations . 4
1.2 Convolution and cross-correlation 5
1.3 Convolutions/correlations seen as template matching 6
1.4 Group correlations . 8

2 Mathematical tools: basic group theory 9
2.1 Groups . 9
2.2 Group actions and representations (groups acting on vectors and

functions) . 12
2.3 Homogeneous space . 14
2.4 Equivariance . 18
2.5 Integration on G using the Haar measure 18

3 Regular Group Convolutional Neural Networks 21
3.1 Artifical Neural Networks for Vectors 22
3.2 Artificial Neural Networks for Signals 23
3.3 Equivariant Neural Networks for Signals 25
3.4 Types of equivariant layers . 26

3.4.1 Isotropic Rd convolutions (X = Y = Rd) 26
3.4.2 Lifting layer (X = Rd, Y = G) 27
3.4.3 Group convolution layer 27
3.4.4 Projection layer (X = G, Y = Rd) 28
3.4.5 Global pooling (X = G, Y = ∅) 28

3.5 Designing equivariant neural networks 29

1

II Steerable group convolutional neural networks 30

4 Mathematical tools: representation theory for SO(3) and the
Clebsch-Gordan tensor product 31
4.1 The groups E(3) and O(3) and homogeneous space S2 32

4.1.1 The groups E(3) and O(3) 32
4.1.2 The sphere S2 is a homogeneous space of O(3). 32

4.2 Steerable vectors, Wigner-D matrices and irreducible representa-
tions . 33

4.3 Fourier transform on S2 and SO(3) 34
4.3.1 Spherical Harmonics . 35
4.3.2 Irreducible representations as a Fourier basis 36

4.4 Clebsch-Gordan product and steerable linear layers 38

5 Steerable group convolutions 42
5.1 SO(3) Equivariant Steerable Group Convolutions for Spherical

Data . 42
5.1.1 Steerable isotropic S2 convolutions (X = Y = S2) 42
5.1.2 Fourier-based Group convolutions in vectorized form . . . 43
5.1.3 Conclusion . 45

5.2 SE(3) Equivariant Steerable Group Convolutions 46
5.2.1 Steerable functions. 46
5.2.2 Lifting convolution (X = Rd, Y = SE(3)) 46
5.2.3 From regular to steerable group convolutions: kernels in

a spherical harmonic basis. 48
5.2.4 Steerable group convolutions 49
5.2.5 Conclusion. 50

6 Steerable graph neural networks and Point Convolutions 51

III Lie group equivariant neural networks 52

2

Part I

Regular Group Convolutions

3

1 Introduction to convolutions

1.1 Notations

First let us get acquainted with the notation used in these notes. We primarily
consider the construction of neural networks the processing of real-valued signal
data. As such our primary objects of interest our multi-channel functions f :

X → RNc defined on some domain X and with Nc the number of channels.
We furthermore assume that these signals are square integrable as we will often
rely on a notion of inner products1. Let L2(X)Nc denote the space of square
integrable signals. We will often limit our analyses to scalar valued signals, i.e.,
for which Nc = 1. Scalar valued signals will be denoted with f : X → R where
we omit the underline. We can then denote the signal value of a multi-channel
signal at a location x ∈ X as a vector f(x) = (f1(x), . . . , fNc

(x))T ∈ RNc .
For mathematical convenience we will often consider signals as functions on

continuous domain, however, note that in practice data almost always comes
sampled on a finite discrete grid. We will then denote a discretization of X with
X. Our analyses mostly take place in the continuous settings and discretization
aspects will be treated separately. For now, we often abstractly represent the
domain of a signal with X as we will later consider several cases for it; X could
be Rd, a group, or a homogenous space of a group.

Example 1.1 (Signals, Dense signals, Images, Volumetric data). We will as-
sume that signal data such as time series, images and volumetric data are sam-
pled instantiations of continuous signals. E.g., an 28×28 RGB image is a contin-
uous signal sampled on a discrete pixel grid X = {0, 1, . . . , 27}×{0, 1, . . . , 27} ⊂
R2 that assigns to each discrete pixel location x = (x, y) ∈ X an RGB value
f(x) ∈ R3. For mathematical convenience we will however often treat signal
data as continuous functions and treat the discretization aspect and numerical
aspects separately.

Example 1.2 (Sparse signals, Point clouds). Mathematically we treat point
clouds little differently from dense data and assume that the underlying signal
is continuous but is simply measured on a finite set of pixel locations X =
{x1, x2, . . . , xNx

} ⊂ X. A sampled point cloud signal then consists of position-
value pairs (xi, f(xi)), where we may decide to write fi := f(xi).

We will denote vectors in Rd with boldface symbols such as e.g. a coordinate
vector x ∈ Rd or a feature vector f ∈ RNc . Note that a multi-channel, or
vector valued, signal f is not a standard Euclidean vector. It will therefore
not be boldfaced but we will underline it. Its value sampled at a location xi is
however a vector, hence we will occasionally use the notation fi := f(xi) as in
Example 1.2.

1We will not concern ourselves with the analysis of function spaces but simply use notations
such as L2(X) to conveniently denote a space of functions even when we occasionally only
require L1(X) or when it could come from other spaces. When necessary we will make more
accurate specifications.

4

1.2 Convolution and cross-correlation

Before we define group convolutions let us first revisit the definition of the
convolution operator on Rd and work a bit on the intuition for why it is such a
successful building block to build deep leanring architectures.

Definition 1.1 (Rd-Convolution). The convolution operator is denoted with ∗
and a convolution between two signals k, f ∈ L2(Rd) is denoted with f ∗ g. The
convolution between two signals is again a signal that is defined by

(k ∗ f)(x) =

∫
Rd

k(x− x̃)f(x̃)dx̃ . (1)

Its definition for multi-channel signals k, f ∈ L2(Rd)Nc is given by

(k ∗ f)(x) =

Nc∑
c

∫
Rd

kc(x− x̃)fc(x̃)dx̃ . (2)

The first input to the convolution (k or k) is called the convolution kernel.

Definition 1.2 (Rd-Correlation). Cross-correlation operator, or simply cor-
relation operator, is denoted with ? and a correlation between two signals
k, f ∈ L2(Rd) is denoted with f ∗ g and defined by

(k ? f)(x) =

∫
Rd

k(x̃− x)f(x̃)dx̃ . (3)

Similarly for multi-channel signals k, f ∈ L2(Rd)Nc it is defined by

(k ? f)(x) =

Nc∑
c

∫
Rd

kc(x̃− x)fc(x̃)dx̃ . (4)

The first input to the correlation (k or k) is called the correlation kernel.

Correlations are convolutions with reflected kernels The definition of
convolution and cross-correlation is rather similar and from a deep learning
perspective are equally useful. Namely, convolutions are equal to correlations
simply via a kernel reflection, i.e., k∗f = ǩ ?f where ǩ(x) = k(−x). Then, since
the kernels k are learned anyway, it does not matter whether a layer in a neural
network is parametrized via correlations or convolutions. Although technically
not very precise, in deep learning literature the term convolution is often used
for any of the equations (1-4).

From a mathematical point of view the convolution operator may be prefer-
able as it has the property that it commutes with swapping the functions, i.e.,
k ∗ f = f ∗ k. This is not the case for correlations. Nevertheless, we prefer to
work with the correlation operator in these lecture notes as it allows for a more

5

intuitive introduction to group correlations (or convolutions) by the notion of
template matching. This is what we discuss next.

Exercise 1.1. Verify that correlations relate to convolutions via a kernel reflec-
tion.

Exercise 1.2. Verify that convolutions commute (k?f = f ?k) and correlations
do not.

1.3 Convolutions/correlations seen as template matching

Convolutions and correlations are most intuitively thought of as template match-
ing, in which the kernel k acts as a template that is moved over the underlying
signal f and matched at each location x. The matching is then done in terms
of an inner product between the translated kernel k(· − x) and the underlying
signal f(·) in terms of inner products. Let us formalize the definition of the
inner product and the norm that it induces.

Definition 1.3 (L2(Rd)-inner product). The L2-inner product between two
square integrable (with respect to measure dx̃) signals k, f ∈ L2(X) or multi-
channel signals k, f ∈ L2(X)Nc are both denoted with (·, ·)L2(X) and given by

(k, f)L2(X) =

∫
X

k(x̃)f(x̃)dx̃ , (5)

(k, f)L2(X) =

Nc∑
c

∫
X

kc(x̃)fc(x̃)dx̃ . (6)

Definition 1.4 (L2(Rd)-norm). Given the definition of the inner products in
(5-6) the L2(X) norms for scalar and multi-channel signals are both denoted
with ‖·‖L2(X) and given by

‖f‖2(L2(X) = (f, f)L2(X) , (7)

‖f‖2(L2(X) = (f, f)L2(X) . (8)

Exercise 1.3. Verify that the inner product can interpreted as a similarity
measure. Consider the case of k, f ∈ L2(Rd) with ‖k‖(L2(Rd) = ‖f‖(L2(Rd) = 1.
Show that (k, f)L2(Rd) = 1 when k = f and that (k, f)L2(Rd) = −1 when k = −f .

Intuition, the inner product as a similarity measure The intuition on
L2(X)-inner products is similar to that of what you may be used to on the
standard inner product with Euclidean vectors. Recall that functions are also
vectors; namely infinite dimensional vectors whose ”components” f(x) are in-
dexed with infinitely many x ∈ X. Also for functions there is a notion of
alignment ((k, f)L2(X) > 0) or orthogonality ((k, f)L2(X) = 0) and when divid-
ing the inner product of Eq. 5 with the norms of the functions one arrives at

6

a norm-independent similarity measure that is the functional equivalent of the
well-known cosine-similarity. Template matching with such normalized inner
product is called normalied cross-correlation and can for example be useful to
detect patterns in image data invariantly to local brightness and crontast varia-
tions, see e.g. [Bekkers et al., 2015] where this is done in a group convolutional
setting.

Template matching Let us consider template matching using the inner prod-
uct as matching score, and define Tx the translation operator as

[Txk](x̃) = k(x̃− x) . (9)

hen cross-correlation is no different than matching shifted kernels with the un-
derlying signal for all possible translations x via

(k ? f)(x) = (Txk, f)L2(Rd) . (10)

This is precisely how one typically looks at the convolution layers in a convo-
lutional neural network. In each layer the input feature map is correlated with
a set of kernels that are responsible to detect local patterns or features. For
example, when following the template matching with a ReLU activation func-
tion only the positive responses survive, those are the locations where the kernel
aligned with the background. The interpretation of the output feature maps is
then an assignment of a score for the presence of a feature at each position.

Weight sharing in CNNs The patterns that are learned in CNNs are usually
highly redundant when it comes to geometric transformations such as rotations.
One often sees that in the earlier layers of a CNN the kernels are rotated copies
of each other. E.g., one kernel may act as edge detector in one direction, and
one might act as edge detector in another location. The power of CNNs is that
it allows for weight sharing over different locations in the data; a kernel that
is shared over all positions through the correlation operator. However, there
appears to be no weight sharing over rotations/orientations while inspection
of learned features show that this may significanlty decrease redundancy. In
many datastructures one can expect basic patterns to appear under arbitrary
rotations, such as edges, corners, lines, etc. in 2D images or 3D medical image
data or certain configuraitons of clusters of atoms in molecular data.

Weight sharing in G-CNNs Group convolutional neural networks allow for
weight sharing over a larger group of transformations than just translations. The
principle is exactly the same as in classical CNNs. Namely, through template
matching with correlation kernels, however, now the kernel is not just translated
but could e.g. be translated, rotated, and/or scaled. To formalize this approach
we will soon introduce the appropriate group theoretical prerequisites, but the
intuition is as follows.

7

1.4 Group correlations

Group correlations Consider a transformation operator Lg that is parame-
terized by the transformation paramaters g. This could e.g. be a roto-translation
parametrized by g = (x, θ) with x the translation vector and θ the rotation an-
gle, where L(x,θ) is defined as

[L(x,θ)k](x) = k(R−1θ (x̃− x)) . (11)

Then a roto-translation lifting correlation is exactly the same as before (Eq. 10),
but with a different transformation applied to the kernel:

(k ?SE(2) f)(x, θ) = (L(x,θ)k, f)L2(Rd) (12)

=

∫
Rd

k(R−1θ (x̃− x))f(x̃)dx̃ .

It is a matching of a roto-translated kernel with the underlying signal. Note,
however, that the output is no longer a feature map on Rd but a higher di-
mensional feature map on the space of transformation parameters. I.e., let f l+1

denote such an output feature map, then f l+1 ∈ L2(SE(2))Nc where SE(2)
denotes the roto-translation group, or special Euclidean motion group.

G-CNNs G-CNNs then are NN architectures in which feature maps are trans-
formed by consistent application of group correlations of the form given in
Eq. (10 and Eq. (12). This means that after the first group convolution, af-
ter which a feature map on SE(2) is obtained, the layers are parametrized by
three-dimensional kernels that characterize patterns of position-orientation lo-
calized features2 and which are transformed by the application of Lg that now
transforms the SE(2) kernels rather than 2D kernels. This requires a new defi-
nition of Lg as so far we have only defined how it transforms 2D signals. Instead
of writing out what Lg looks like every time we need it, it is common to threat
G-CNN on a high level in terms of group theory. We will do this in the up-
coming chapters. Once familiar with group theory one can keep the equations
simple (though initially seemingly abstract) and construct operators/layers in
a principled way.

2Where a 2D kernel can be though of as assigning expected values to relative positions, a
SE(2) kernel assigns values to relative positions and rotations, relative to a central pose. E.g.
in terms of a face detector, the kernel would like to see two eyes, two ears and a mouth at
positions and orientations relative to the position and orientation of a central point, e.g. the
nose.

8

2 Mathematical tools: basic group theory

In this chapter we will cover the very basics of group theory. Covering the
notions of a group structure (product, inverse, identity), representations and
equivariance. This will be sufficient to understand G-CNNs and implement reg-
ular group convolutional neural networks. Later, in the second part of these
lecture notes in Part II we will expand the group theoretical tool set with con-
cepts that allow us to build steerable G-CNNs. Let us start with the beginning.

2.1 Groups

Definition 2.1 (Group, group product, group inverse). A group is an algebraic
structure that consists of a set G and a binary operator · called the group
product, that satisfies the following axioms:

• Closure: for all h, g ∈ G we have h · g ∈ G;

• Identity : there exists an identity element e ∈ G;

• Inverse: for each g ∈ G there exists an inverse element g−1 ∈ G such that
g−1 · g = g · g−1 = e; and

• Associativity : for each g, h, i ∈ G we have (g · h) · i = g · (h · i).

Transformation groups As we will see we can get more intuition about
groups when thinking about them as representing transformations, however, to
get started it may be sufficient to think of groups purely in an algebraic sense;
like for vector spaces there is a formal definition that involves operators that
can be used to manipulate their elements. E.g. a vector space is set of elements
for which we have a notion of vector addition and scalar multiplication. For
groups we work with a different algebraic structure in which the group product
plays a central role. In these lecture notes we most regularly treat groups as
transformation groups3, in which the group product can be interpreted as a rule
for computing the net effect of combining two transformations and the inverse as
a rule for obtaining the transformation parameters that would undo the original
one.

3Though group structures appear in many places, e.g., as symmetries in particle physics

9

Example 2.1 (Translation group G = (Rd,+)). The translation group consists
of the set of translation vectors Rd and is equiped with the group product and
inverse given by

g · g̃ = (x + x̃) , (13)

g−1 = (−x) , (14)

with group elements g = (x), g̃ = (x̃) ∈ Rd. As a group, it is referred to with
(Rd,+) rather than Rd as to avoid confusion on whether or not the elements
should be regarded as group elements or vectors. The group product can be
interpreted as the the computational rule for obtaining the parameters that
describe the net effect of first applying a translation with parameters g̃ = (x̃)
followed by a translation by g = (x).

Note that in Example 2.1 we do not directly represent the group elements as
the vectors x, x̃ but rather write g, g̃ to indicate that we are talking about group
elements. We do this as to avoid confusion on whether or not we should treat the
elements as group elements or vectors. That is, the group product and inverse
are defined for group elements and not vectors (what would be the inverse of a
vector x−1?). Conversely, denoting group elements in vector notation implies
that it is a vector for which a scalar multiplication exists, however, for group
elements there is no notion of a scalar product.

Lie groups In these notes, we will primarily focus on continuous transforma-
tion groups such as translations, rotations and scalings. When such a continuous
group also has the structure of a manifold it is called a Lie group. Although Lie
groups have additional structure that can be leveraged to build equivariant deep
learning algorithms [Bekkers, 2019, Finzi et al., 2020, Hutchinson et al., 2021,
Dehmamy et al., 2021, Finzi et al., 2021], we will postpone a deeper discussion
to Part ??.

Definition 2.2 (Lie group). A Lie group is a continuous group that is also a
differentiable manifold.

Example 2.2 (Rotation group, special orthogonal group G = SO(d)). The
rotation group, also known as the special orthogonala group, is a Lie group that
consists of the set of d× d-matrices with determinant 1, i.e., the set of rotation
matrices {A ∈ Ad×d | ATA = AAT = 1 ∧ det A = 1}, together with the group
product and inverse given by the matrix product and inverse respectively:

g · g′ := (RR′) , (15)

g−1 := (R−1) . (16)

with g = (R), g̃ = (R) two rotations.

aOrthogonal matrices have either determinant +1 or −1, special then refers to only con-
sidering the +1 case.

10

Parametrization of a group In contrast to the translation case, there is
less harm in deciding to directly denote the group elements g with the matrices
R that they represent since the group product and inverse coincide with the
matrix product and inverse. However, for notational consistency we usually
stick with the group element notation. Moreover, we could decide to group
transformations in parametric form, i.e., we could represent 2D rotations with
just one number (the rotation angle) instead of a full matrix as follows.

Example 2.3 (2D Rotation group G = SO(2) in parametric form). The 2D
rotation group can be represented with the set of rotation angles S1, i.e., the
circle, together with the group product and inverse given by

g · g̃ = (θ + θ̃) , (17)

g−1 = (−θ) , (18)

with g = (θ), g̃ = (θ̃). Their matrix representations are given by the rotation
matrices

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
. (19)

Note that the groups defined in Example 2.2 with d = 2 and the group SO(2)
as defined above are equivalent via the relation given in Eq. (19). In fact, the
matrix Rθ is what one calls a matrix representation of the rotation group SO(2),
a concept that we will formalize shortly.

Need for a group structure For both the translation and the rotation group
it is not strictly necessary to threat them in a group theoretical setting. As a
combination of translation is just obtained by vector addition a vector structure
would be sufficient and for rotation we can rely on the algebraic rules for matrix
multiplication. However, when considering more general transformations we
can no longer treat elements of a transformation group as vectors, which will
become apparent in the next example.

Example 2.4 (Rotation-translation group, special Euclidean motion group
SE(d)). The d-dimensional roto-translation group, also known as the special
Euclidean motion group SE(d), consists of the seta Rd × SO(d) of translation
vectors Rd and rotations SO(d), with group product and inverse given by

g · g̃ = (Rx̃ + x,RR̃) , (20)

g−1 = (R−1x,R) , (21)

with g = (x,R), g̃ = (x̃, R̃).

aHere the symbol × denotes the Cartesian product between sets, i.e., elements of the roto-
translation group consist of both a translation vector and a rotation matrix. It should not be
confused with the direct product in the group theoretical sense.

11

We recognize that now we can no longer combine transformation in SE(2) by
adding them as vectors or multiplying them as vectors simply because g = (x,R)
is neither just a vector nor a matrix. But even if we were to combine the
translations and rotations separately, it wouldn’t reflect a proper combination
of roto-translations as that would require a mixing of the components of the
transformation. In fact, the group SE(d) is what one calls a semi-direct product
of the translation group (Rd,+) with the rotation group SO(d), where semi-
direct (formalized in Definition 2.10) refers to the fact that the group elements
of the sub-groups interact with eachother in the group product.

Apart from being a semi-direct product group, the above example of SE(d)
further justifies the introduction of a group structure as now the combination
of two transformations g, g̃ ∈ G can now simply be written as g · g̃ instead of
heaving to write out the product in terms of the computational rules defined
for matrices and vectors.

Discrete groups The groups that we consider for now are all Lie groups,
however, in order to numerically compute with them we may consider at times
discretizations of such groups that form discrete subgroups.

Definition 2.3 (subgroup). A subgroup of a group G is subset H ⊂ G such
that the restriction of the group product from G to H makes H a group.

Example 2.5 (Discrete translation group G = (Zd,+)). We can think of the
set of integer Zd vectors as a discretization of Rd, e.g., the pixel grid on which
an image may be defined. This set of integers Zd together with the addition
operator forms a discrete group as the sum of two integers is again an integer.
We denote this group with (Zd,+). It is a sub-group of (Rd,+) as Zd ⊂ Rd and
it shares the same group product.

2.2 Group actions and representations (groups acting on
vectors and functions)

So far, we have only described how group elements interact with each other
through the group product, but not how to interact with other kind of objects
such as vectors. This seems a bit limiting, especially when we think of groups as
transformations. The group product tells us how to combine transformations,
but it doesn’t tell us how to apply such transformations to other objects such
as vectors or signals. For this, we need a notion of a group action and group
representations.

Definition 2.4 (Group action). A group action on a space X is a binary oper-
ator � : G×X → X that follows the group structure (it is a group homomor-
phism) via

g � (g̃ � x) = (g · g̃)� x , (22)

with g, g̃ ∈ G and x ∈ X. Thus, the action can be applied one after the other
with two group elements g and g̃ or at once using g · g̃.

12

Example 2.6 (Group action of rotations G = SO(d) on X = Rd). The action
of the group G = SO(d) (see Example 2.2), denoted with �, acting on X = Rd
is given by

g � x = Rx , (23)

with g = (R) ∈ SO(d) and x ∈ Rd.

The definition of an action is very general and essentially tells us that a group
can act on many types of spaces in many different ways (does not even have to
be linearly), as long as the group structure of Eq. (22) is maintained. However,
in many cases, specifically in these lecture notes we are only interested in linear
group actions that act on vector spaces. Such actions are called representations.

Definition 2.5 (Representation). A representation is an invertible linear trans-
formation ρ(g) : V → V parametrised by group elements g ∈ G that acts on
some vector space V , and which follows the group structure (it is a group ho-
momorphism) via

ρ(g)ρ(h)v = ρ(g · h)v ,

with v ∈ V .

Group acting on Rd When the vectors in V are expressed in a particular
finite dimensional basis the vectors can be represented as elements of Rd and
linear transformations are given by d× d matrices.

Definition 2.6 (Matrix representation). A matrix representation D(g) is a rep-
resentation that acts on a finite dimensional vector space Rd via d×d matrices.
The matrices are parametrized by group elements and follow the group struc-
ture, as required for representations, via

D(g)D(g̃)x = D(g · g̃)x , (24)

with x ∈ Rd and D(g) ∈ GL(d,R) .

Group acting on L2(X) Recall that the function space L2(X) also a vector
space (we can add and subtract functions and multiply them with scalars) and
thus the action on it is called a representations. The most common way to
let a group G act on functions is through left-regular representations. In such
representations, a function is transformed simply by transforming the domain
X via the action of the group G on it as follows.

Definition 2.7 (Left-regular representation). Let f ∈ L2(X) and � denote the
action of the group G on the domain of X. Then the left-regular representation
of G acting on L2(X) is given by

[Lgf](x) = f(g−1 � x) . (25)

It is called left-regular as the group acts on the domain from the left.

13

Notation of group actions and representations In literature on group
equivariant deep learning one regularly encounters an overloading of the group
product symbol · to generally represent the action of G on any other object. E.g.
denote the action of the group on itself, on Rd, and function space L2(X) all
with · respectively via g · g̃, g ·x, and (g ·f)(x) for g, g̃ ∈ G being group elements,
x ∈ Rd and f functions. This makes sense as each of these group actions forms
a group themselves4 that are homomorphic to the group G. Often, however, in
it is often helpful to make explicit what kind of objects we are dealing with and
so in these lecture we often stick to the following notation

• Action of G on G. The group acts on itself via the group product ·.

• Action of G on the domain of a function X. We will mostly consider the
transformation of signals and their domains. To denote the group action
on the domain of such functions we use the � notation and e.g. write
g � x with x ∈ X.

• Action of G on Rd. We may occasionally denote the action of G on Rd
with � notation, but mostly we will be explicit and denote the action via
matrix representations. E.g., we write g � x = D(g)x, with x ∈ Rd and
D(g) ∈ GL(d,R) a matrix representation of G.

• Action of G on L2(X). This is done via the left-regular which we generally
denote with Lg.

2.3 Homogeneous space

Homogenous spaces In the introduction Section ?? we approached convolu-
tion layers from a template matching point of view, where now with our renewed
knowledge of group theory, understand that template matching is nothing else
matching a kernel with a signal via the inner product where the kernel is moved
around via the group action (or left-regular representation) of G. In order for
this construction to be useful, however, it is nice that via the action we can
reach every location in the input signal as to be able to exploit all available
information. This is guaranteed if the domain X of the signals k, f ∈ L2(X)
is what one calls a homogeneous space of the group G, which we formalize as
follows.

Definition 2.8 (Transitive action). A group action � of G on a space X is
called transitive if for every pair of points x, x̃ ∈ X there exists a group element
g ∈ G such that g � x = x̃.

Definition 2.9 (Homogeneous space, semi-direct product, and group quotient).
A space X which has a transitive group action of a Lie group G is called a
homogeneous space of G.

4You can verify this by checking the group axioms and taking the composition of the action
as group product. E.g. the composition of two group actions is again a group actions which
verifies closure.

14

Exercise 2.1. Show that X = Rd is a homogeneous space of both G = (Rd,+)
and G = SE(d).

Exercise 2.2. Show that X = Rd is not a homogeneous space of G = SO(d).

Semidirect product groups In Exercise 2.1 we showed that Rd is a homo-
geneous space of SE(d). This is so the case as Rd can be identified with the
translation group (Rd,+), which is a subgroup of the roto-translationg group
SE(d) that is formed as the semi-direct product of translations and rotations.

Definition 2.10 (Semidirect product). Let N and H be two groups each with
their own group product which we denote with the same symbol ·, and let H act
on N by the action �. Then a (outer) semi-direct product G = N oH, called
the semi-direct product of H acting on N , is a group whose set of elements is
the Cartesian product N ×H, and which has group product and inverse

(n, h) · (ñ, h̃) = (n · (h� ñ), h · h̃) , (26)

(n, h)−1 = (h−1 � n−1, h−1) . (27)

Exercise 2.3 (SE(d) = (Rd,+)oSO(d)). Use the above definition to construct
the group SE(d) with group product and inverse

g · g̃ = (Rx̃ + x,RR̃) ,

g−1 = (R−1x,R) ,

using the group structure of (Rd,+) (Example 2.1), the group structure of SO(d)
(Example 2.2), and its action on Rd (Example. 2.6).

Homogeneous spaces of semidirect product groups WRITE SOME-
THING HERE In the following we show that

Definition 2.11 (Coset). Let H ⊂ G be a subgroup of H. Then gH denotes a
coset given by

gH = {g · h|h ∈ H} . (28)

Definition 2.12 (Quotient space G/H). Let H ⊂ G be a subgroup of G. Then
G/H denotes the quotient space that is defined as the collection of unique cosets
gH ⊂ G. Elements of G/H are thus cosets that represents an equivalence class
of transformations for which g ∼ g̃ are equivalent if there exsists a h ∈ H such
that g = g̃h.

Lemma 2.1 (G/H is a homogeneous space of G). A quotient space G/H, that
has cosets gH as its elements, is a homogeneous space of G. The group G acts
transitively on G/H via

g � g̃H = (g · g̃)H . (29)

15

Exercise 2.4. Show transitivity (Definition 2.8) of the action of G given in
Eq. (29).

Example 2.7 (Quotient space Rd = SE(d)/SO(d)). Let H = ({0}×SO(d) the
subgroup of rotations in SE(d), with 0 the identity element of the translationg
roup (Rd,+). The the cosets gH are given by

gH = {g · (0, R̃) | R̃ ∈ SO(d)}
= {(Re + x,RR̃)| h ∈ SO(d)}
= {(x,RR̃)| R̃ ∈ SO(d)}
= {(x, R̃)| R̃ ∈ SO(d)} ,

with g = (x,R). So, the cosets are given by all possible rotations for a fixed
translation vector x, the vector x thus indexes these sets. We can therefore
make the identification

Rd ≡ SE(d)/SO(d) .

We already saw in Exercise 2.1 that Rd is a homogeneous space of SE(d), this
is a consequence of Lemma 2.1.

Lemma 2.1 shows that a quotient space G/H of a group G with H is a
homogeneous space. We can also approach this in the other direction and state
that any homogeneous space of G is equivalent to a quotient space G/H for
some H. This is stated in the following Lemma, for which we first need to
introduce the notion of a stabilizer.

Definition 2.13 (Stabilizer). Let G act on X via the action �. For every
x ∈ X, the stabilizer subgroup of G with respect to the point x is denoted with
StabG(x) is the set of all elements in G that fix x:

StabG(x) = {g ∈ G | g � x = x}. (30)

Lemma 2.2. Let X be a homogeneous space of G. Then X can be identified
with G/H with H = StabG(x0) for any x0 ∈ X.

Affine groups Finally when it comes to types of groups and homogeneous
spaces we note that often we are interested in groups that act on Rd, as most
often one deal with data on Rd. It is therefore useful to introduce the following
class of groups.

Definition 2.14 (Affine groups). Affine groups G = Rd o H are a class of
groups that are the semidirect product of a group H ⊆ GL(Rd) acting on Rd,
with GL(Rd the group of general linear transformations acting on Rd.

The transformations in H ⊆ GL(Rd) are commonly represented as invertible
matrices A which act on Rd via matrix-vector multiplication, by which the group

16

product is given by (see ...)

g1 · g2 = (x1,A1) · (x2,A2) = (A1x2 + x1,A1A2) . (31)

However, since one often considers H as a subgroup of GL(Rd) it is typically low
dimensional it may be convenient to represent the group elements and product
in parametric form.

Example 2.8 (Affine group SE(2)). Recall the Example 2.3 for the θ
parametrization of SO(2). The group SE(2) is an affine group that consists
of the set R2 × S1, where the circle S1 contains the rotation angles, and which
has its group product given by

(x1, θ1) · (x2, θ2) = (Rθ1x2 + x1, θ1 + θ2) , (32)

with Rθ the matrix representation of SO(2) (Eq. (19)) acting on Rd.

Affine group convolutions using Conv2D A convenient consequence of
working with affine groups (and semidirect product groups in general) is that it
allows us to split the group operations into the translation part and the subgroup
transformation part. E.g., the representation of such a group G = Rd oH

LG(x,h) = L(Rd,+)
x ◦ LGh , (33)

where we labeled the representations with the respective groups for which they
are defined (G, (Rd,+), and H). The full group transformation can thus be
obtained by first applying the transformation in H, followed by a translation.
This allows us to fully leverage the efficiency of the usual (GPU accelerated) Rd
convolution operator as seen in the next example.

Example 2.9 (SE(2) convolutions with Rd convolutions). Let k, f ∈ L2(R2) be
a 2D kernel and signal and let us denote correlation on R2 with ?R2 as defined
in Eq. (10) and the SE(2) lifting correlation with ?SE(2) as defined in Eq. (12).
Then the SE(2) lifting correlation is written in terms of ?R2 correlations as
follows

(k ?SE(2) f)(x, θ) = (LSE(2)
(x,θ) k, f)L2(R2) (34)

= (L(Rd,+)
x LSO(2)

θ k, f)L2(R2) (35)

∗
= (L(Rd,+)

x kθ, f)L2(R2) (36)

= (kθ ?Rd f)(x) , (37)

where in step
∗
= we defined kθ(x) = k(R−1θ x) as the rotated kernel. So, we see

that a lifting group convolution can be obtained by first precomputing a filter
bank of rotated kernels and apply to the input signal via the usual correlation
operator, which in many deep learning libraries is efficiently implemented in a
Conv2D layer.

17

2.4 Equivariance

Now we have set all the prerequisites in place to formalize the term equivari-
ance. Equivariance is a property of an operator (for example a layer in a neural
network) that guarantees that if the input transforms the output transforms in
a predictive way.

Definition 2.15 (Equivariance). An operator Φ : X → Y that sends elements
from input space X to output space Y is called equivariant to a group G if there
are actions of G on X and Y respectively denoted by ρX and ρY such that

∀g∈G : ρY(g) ◦ Φ = Φ ◦ ρX (g). (38)

In other words, the operator Φ commutes with actions of the group G.

In a deep learning context this is a very useful, if not essential, property to
have. For example, if a layer is translation equivariant, such as the convolu-
tion/correlation layer, then this means that if the input were to be translated
that the output is translated as well. This implies the following:

1. Equivariance implies that no information is lost by input transformations,
it is just shifted to different locations in the output.

2. Equivariance allows for weight sharing over the transformations in the
group. Being able to detect a feature at one location/pose guarantees
that it is equally well detected at another location.

Example 2.10 (Convolution layer). To link Definition 2.15 more precisely to
the CNN setting consider the following. Let a layer Φk be

fout(x) = [Φkf
in](x) = (k ?Rd f in)(x),

defined by a correlation operator as defined in Eq. (10) and parametrized by
kernel k. Then Φk is equivariant to the translation group G = (Rd,+) as it
maps input feature maps f in ∈ X = L2(Rd) to output feature maps fout ∈ Y =
L2(Rd) on which the representation of the translation group acts via ρX (g) =
ρY(g) = Tg as given in Eq. (9).

Exercise 2.5. Proof that the correlation operator is equivariant to the trans-
lation group, as claimed in Example 2.10.

2.5 Integration on G using the Haar measure

Finally, in order to have all the mathematical tools in place to define the general
framework for regular G-CNNs in Chapter 3 we need to know how to integrate
over groups, as required in convolutions, inner products, or norms. Therefore,
we need a measure defined on G.

18

Definition 2.16 (Haar measure, unimodular groups). A Haar measure dg is
an invariant measure on the group G. The following defines two types of Haar
measures.

• The left Haar measure is invariant to left multiplications, i.e.,

∀g̃∈G : d(g̃g) = dg.

• The right Haar measure is invariant to right multiplications, i.e.,

∀g̃∈G : d(gg̃) = dg.

Groups for which the left and right Haar measure coincide are called unimod-
ular groups. The Haar measure on unimodular groups is both left- and right-
invariant.

The Haar measure plays a central role in proving equivariance of differential
operators as it allows the use integration by substitution whilst leaving the
measure invariant. For example we can use it to derive the following useful
identity

Lemma 2.3. Let k, f ∈ L2(G) and Lg the left regular representation of a group
G on L2(G), with left Haar measure dg. Then we have

(Lgk, f)L2(G) = (k,Lg−1f)L2(G) .

Proof. The proof is obtained via as follows:

(Lgk, f)L2(G) =

∫
G

[Lgk](g̃)f(g̃)dg̃ =

∫
G

k(g−1g̃)f(g̃)dg̃

∗
=

∫
gG

k(g̃)(gg̃)dgg̃ =

∫
G

k(g̃)[Lg−1f](g̃)dg̃

= (k,Lg−1f)L2(G) ,

where
∗
= the substitution g̃ 7→ gg̃ is made.

Exercise 2.6. Let k, f ∈ L2(Rd) and G = SE(d). The group action of SE(d)
on Rd given by

g � x̃ = Rx̃ + x ,

with g ∈ SE(d) and x ∈ Rd. Then let Lg be the left-regular representation of
SE(d) on L2(Rd). Proof the following:

(Lgk, f)L2(Rd) = (k,Lg−1f)L2(Rd). (39)

19

Exercise 2.7. Consider Φk the roto-translation lifting correlation parametrized
by kernel k ∈ L2(R2) as defined in Eq. (12) and the definition of equivariance
as in Definition 2.15.

(a) What are the input and output spaces X and Y of Φk?

(b) Give the representations ρX and ρY of SE(2) that acts on X and Y.

(c) Proof that Φk is equivariant to the roto-translation group SE(2) using the
identity given in Eq. (39).

Lemma 2.4 (Duality relation for affine groups acting on L2(Rd)). For affine
groups G = Rd oH with group elements g = (x, h) ∈ G the following identity
holds

(Lgk, f)L2(Rd) = |deth| (k,Lg−1f)L2(Rd) , (40)

with |deth| the absolute determinant (Jacobian) of the matrix representation
of h acting on Rd.

Exercise 2.8. Proof Lemma 2.4.

The |deth| factor is a result of the integration by substitution in which one
has to take the Jacobian of the transformation into account. The fact that the
identity of Eq. (39) holds for SE(2) is that it is a unimodular group for which
|deth| = 1. Note, however, that when integrating over the group G, e.g., when
considering the L2(G) inner product, we do not have such a front factor as there
we integrate using the invariant Haar measure and have

(Lgk, f)L2(G = (k,Lg−1f)L2(G) . (41)

Haar measure and parametrizations One can make the Haar measure
explicit in terms of the parametrization used for the group. Will include next
version of the notes.

20

3 Regular Group Convolutional Neural Networks

Before we move on to the details let us start by stating the most important
message of these lecture notes.

A linear layer between feature maps
is equivariant if and only if it

is a group convolutions.

Recall that the success of deep learning is largely due to the introduction of
convolutional neural networks (CNNs). The impact of CNNs can be attributed
to the equivariance property the convolution layers by which they are build.
Namely,

1. Equivariance implies that no information is lost by input transformations,
it is just shifted to different locations in the output.

2. Equivariance implies that we can guarantee that data points that equiva-
lent up to a transformation are treated in the same way. E.g. we still say
that an image contains a cat regardless of whether the cat is in the upper
left, or bottom right corner of the image.

3. Equivariance allows for weight sharing over the transformations in the
group. Being able to detect a feature at one location/pose guarantees
that it is equally well detected at another location. This reduces the
number of learnable parameters as now one does not have to relearn what
a feature looks like at each location.

4. Equivariant operators preserve geometric structure in the data. Structure
may refer to the neat ordering of pixels an image that allow us to identify
neighborhoods and have a sense of locality that allows for weight sharing.
The fact that equivariant operators preserve the geometric structure of
the data allow us to build deep equivariant architectures.

In many cases there is more structure than just translational symmetries. It is
the purpose of these lecture notes to provide methods for extending the equiv-
ariance property beyond just translations by explaining the framework of group
equivariant CNNs, or simply G-CNNs.

As an example for the need for equivariance beyond translations consider the
following. In medical image data there often is no intrinsic/preferred orientation
and tasks such as tumor or blood vessel detection are inherently roto-translation
invariant; one wants to be able to detect tumors or blood vessels regardless of
how they are oriented in the data. The same is the case in physical systems or
in computational chemistry. E.g., in N-body problems where particles interact

21

with each other in an equivariant manner. When the system of particles rotate,
the forces rotate accordingly.

There are too many applications to list here where equivariance plays a key
role. The main message here is, it only requires a few moments of thought
to figure out which geometric structure underlies your data and problem and
realize that you may want to preserve it for the reasons mentioned above. It
then follows that the best you can do is work with group convolutional neural
networks since, as we will show shortly: The group convolution operator is the
most general/expressive linear operator that is equivariant.

3.1 Artifical Neural Networks for Vectors

Let us first consider the classical structure of artificial neural networks (NNs).
Classically NNs are build for the processing of vectors in RNc , where these
vectors are iteratively transformed by interleaving linear (affine) transformations
with non-linear activation functions. Let l index the depth of the neural network,
and xl ∈ RNl the feature vectors at layer l. Then a layer Φl is typically defined
as

xl+1 = Φl(xl) = σ(Wlxl + bl) , (42)

in which Wl ∈ RNl+1×Nl is a dense matrix with learnable weights, bl ∈ RNl

a leanable bias vector, and σ a non-linear activation function that is applied
element wise.

It should be clear that processing images, or signals in general, via the defined
layers such as the above the geometric structure of the data is completely lost
as there is no guarantee/constraint that neighboring pixels are processed in a
similar way. It turns out that if we do impose an equivariance constraint on
Eq. (42) we obtain a discrete implementation of a (group) convolution.

22

Example 3.1 (Equivariant layer for discrete periodic signal). Consider a pe-
riodic signal f ∈ L2(S1) on S1 that is sampled on a discrete grid X =
{0, 2π/N, . . . , 2π− 2π/N} with N points. The signal is then represented with a
vector f0 = (f(x1), f(x2), . . . , f(xN))T ∈ RN . Now lets denote a periodic shift
with the permutation matrix

S =

0 1 0 . . .
0 0 1 . . .
...

...
...

. . .

1 0 0 . . .

 .

Then, wanting Φ(Sxl) = SΦ(xl) implies that W should commute with S, i.e.,
WS = SW. Solutions to this problem are given by circulant matrices of the
form

W =

w1 w2 w3 . . .
wN w1 w2 . . .

...
...

...
. . .

w2 w3 w4 . . .

 ,

in which each row is a shifted weight vector w ∈ RN that is shared over all
rows. The implications are threefold:

• Equivariance is guaranteed meaning that the same features are represented
regardless of the initial pose/shift of the input. Upon a shift of the signal
the output is just shifted in a predictable way.

• The number of learnable parameters is drastically reduced as now the layer
is parametrized by N weights instead of N2.

• Since the (neighborhood) structure is preserved on can choose to localize
the transformation. I.e., by e.g. setting wn = 0 for n > 3 one ensures
that the output at each location is only generated using a neighborhood
of 3 input points. Which give an even further reduction of parameters.
Moreover, on non-periodic signals this reduces boundary artifacts.

3.2 Artificial Neural Networks for Signals

Linear transformations of signals In a similar way as we build NNs to
process vectors by interleaving linear layers with non-linearities. We can make
a construction for NNs to process continuous signals. Like in the case of classical
NNs, the main workhorse will be the linear layer, that now has to transform fea-
ture maps f ∈ L2(X) instead of vectors f ∈ RN . Whereas for vector spaces the
most general linear transormations are given by matrix vector multiplications,
for continuous signals linear transformations are given by kernel transforma-
tions.

23

Theorem 3.1 (Dunford-Pettis: Linear bounded maps are integral transforms).
Let K : L2(X) → L2(Y) be linear and bounded operator that maps between
spaces of feature maps L2(X) and L2(Y). Then there exists a kernel k ∈
L1(Y,X) such that K is an integral transform via

(Kf)(y) =

∫
X

k(y, x)f(x)dµX(x) , (43)

with f ∈ L2(X), and dµX a Radon measure on X.

Intuitively one may think of Eq. (43) as the continuous counter part of
matrix vector multiplication, having in mind that signals are also vectors, be it
infinite-dimensional. Like in matrix-vector multiplication the output vector at
index j is given by a sum over the product of the matrix coefficients with all
elements of the input vector indexed with i. In the continuous counter part, the
vectors (signals) are indexed with continuous ”indices” x and y, the summation
is an integral, and the matrix is a two argument kernel:

Vectors: f l+1 = Wx ⇔ f l+1
j =

Nl∑
i

wji x
l
i , (44)

Signals: f l+1 = Kf l ⇔ f l(y) =

∫
X

k(y, x)f l(x)dµX(x) . (45)

Linear layers for multi-channel signals An artificial neural network for
processing feature maps would than be based on layers that map one multi-
channel feature map f l ∈ L2(X l)Nl to the next one f l+1 ∈ L2(X l+1)Nl+1 via a
layers of the following form

f l+1 = σ(Kf l + bl) , (46)

with learnable bias vector b ∈ RNl+1 , and in which K denotes a kernel operator
as defined for multi-channel signals via

Kf l =

∫
X

K(y, x)f l(x)dµX(x) , (47)

in which the layer is parametrized by a learnable matrix-valued kernel K :
Y ×X → RNl+1×Nl that for each y, x combination transforms the feature vec-
tors f l(x) ∈ RNl . In the above we indexed the domain of the feature maps
with l, which may seem odd as it suggests that one may want to change it as
a function of depth. We consider this option since it makes sense in the group
equivariant framework where we may want to lift signals on some domain, e.g.,
X l = Rd to a Lie group, e.g., X l+1 = SE(2). Irrespective of group equivariance,
one can think of a change of the domain of the signals also from a discretiza-
tion perspective where a coarsening of the grid with depth l corresponds to
downsampling/strides.

24

3.3 Equivariant Neural Networks for Signals

As motivated before, we want to build equivariant neural networks for continu-
ous signal data. This means that the layers that we will be using, such as those
of Eq. 46, to be equivariant. With the following theorem we show that our only
option then will be to use group convolutions. In order not to clutter notation
we will omit the symbols · and � as we have been doing so far, but simply write
gg̃ and gx to denote the product and action respectively.

Theorem 3.2 (Equivariant linear layers on homogeneous spaces). Let operator
K : L2(X) → L2(Y) be linear and bounded, let X,Y be homogeneous spaces
on which Lie group G act transitively, and dµX a Radon measure on X. Let
furthermore K be constrained to be equivariant to the group G via LYg ◦ K =

K ◦ LXg , with LXg and LYg the left-regular representations of G on respectively
L2(X) and L2(Y).

1. Then K is a group convolution given by

(Kf)(y) =

∫
X

dµX(g−1
y x)

dµX(x) k(g−1y x)f(x)dµX(x), (48)

for any gy ∈ G such that y = gyy0 for some fixed origin y0 ∈ Y .

2. The kernel has to satisfy the following symmetry constraint

k(x) =
dµX(g−1

y x)

dµX(x) k(h−1x), (49)

for any h ∈ H = StabG(y0) and any x ∈ X.

Proof. See [Bekkers, 2019, App. A] for a complete derivation. A sketch of the
poof is as follows. Theorem 3.1 tells us that K is an integral transform. The
equivariance constraint then imposes that the two-argument kernel of K is left-
invariant via

∀g∈G : k(y, x) = dµX(g−1x)
dµX(x) k(g−1y, g−1x) . (50)

Transitivity of the group G on Y implies that we can define a gy ∈ G such
that y = gyy0 by which we can use Eq. (50) to turn the two-argument kernel
effectively a one-argument kernel via k(g−1y x) := k(y0, g

−1
y x) for some fixed

y0 ∈ Y . This proofs the first item.
The kernel constraint follows from the fact that every homogeneous space

Y of G can be identified with a quotient group G/H. Choose an origin y0 ∈ Y
s.t. ∀h∈H : h y0 = y0, i.e., H = StabG y0, then

∀h ∈ H : k(y0, x) = k(h y0, x)⇔ k(x) =
dµX(g−1

y x)

dµX(x) k(h−1 x) .

In Theorem 3.2 we grayed out the front factor
dµX(g−1

y x)

dµX(x) as in many cases it

greatly simplifies, or can even be completely omitted.

25

Corollary 3.2.1. The following lists special cases in which the front factor
dµX(g−1

y x)

dµX(x) is greatly simplified:

• dµX(g−1
y x)

dµX(x) = 1 for unimodular groups G.

• dµX(g−1
y x)

dµX(x) = 1 when X = G the group itself and using the left Haar

measure for dµX(g) = dg.

• dµX(g−1
y x)

dµX(x) = 1
| deth| when G = RdoH is an affine group and when dµX(x)

is the Lebesgue measure dx. Here deth denotes the determinant of the
matrix representation of H on Rd.

Exercise 3.1 (Kernel constraint). Derive the left-invariance constraint of the
two-argument kernel as given in Eq. (50) using integration by substitution of
variables.

3.4 Types of equivariant layers

In Theorem we have several options to choose for the homogeneous spaces X,
the domain on which the input signal lives, and Y , the domain on which we
want to output signal to live. Let us make these options explicit for affine
groups G = oRd oH with the following definitions.

3.4.1 Isotropic Rd convolutions (X = Y = Rd)

When one sticks to working with planar feature maps, as is common in standard
CNNs that are build with operators such as Conv1D, Conv2D, etc., then the
correlations are planar correlations as usual but the kernels are constraint to be
invariant to transformations of H. E.g., when considering G = SE(d), for which
H = SO(d), one comes to the well-known result that only isotropic kernels can
be used in order to guarantee rotation equivariance. Note, however, that it is
not always possible to construct H-invariant kernels such as e.g. is the case with
the dilation/scaling group H = (R+, ·) where there are no solutions to Eq. (49).

Definition 3.1 (Isotropic Rd convolutions (X = Y = Rd)). An isotropic Rd
convolution layer maps between planar signals L2(Rd) by layers given by Eq. (46)
with K a planar correlation given by

(Kf)(y) =

∫
Rd

1
| deth|k(x− y)f(x)dx , (51)

and in which k satisfies

∀h ∈ H : k(x) = 1
| deth|k(h−1 x) .

26

3.4.2 Lifting layer (X = Rd, Y = G)

Isotropic convolutions are rather limiting due to the kernel constraint. It is
therefore sensible to lift the signals to the group G, as then H = ∅ and there
are not restrictions on k. Consequently, the kernel needs to be matched with
the input signal for every possible transformation in G. E.g. in the SE(2)
case, we want to rotate the kernel for every possible rotation as not to miss
out the detection of a feature at a particular orientation. By making sure the
kernel is matched for all possible transformation we guarantee that the transform
maps are equivariant, namely all relevant information will be encoded in the
output feature map, it is just that under a transformation of G on the input the
information may end up at a different location in the output. We will refer to
such lifted feature maps (functions on G) as G-feature maps.

Definition 3.2 (Lifting layer (X = Rd, Y = G)). A lifting layer maps from
planar signals L2(Rd) to signals L2(G) on the group G. It follows the general
form of the layer as given by Eq. (46), with K a lifting correlation given by

(Kf)(g) =

∫
Rd

1
| deth|k(g−1x̃)f(x̃)dx̃ . (52)

A note on implementation Recall from Eq. (33) and Example 2.9 that
such lifting correlations can be implemented by ConvdD operators with a bank
of H-transformed kernels kh(x) = k(h−1x). I.e.,

(Kf)(x, h) = (kh ?Rd f)(x) .

3.4.3 Group convolution layer

(X = G, Y = G) The output of the lifting layer is a function on the group G. If
we then wish to proceed with layers without any constraints on k we again map
them to G-feature maps (Y = G). The principle remains the same as always, do
template matching with a kernel over all transformations in G. Now, however,
the input is a higher-dimensional signal and so will k be in L2(Rd ×H).

Definition 3.3 (Group convolution layer (X = Y = G)). A group convolution
layer maps between G-feature maps in L2(G). It follows the general form of the
layer as given by Eq. (46), with K a group correlation given by

(Kf)(g) =

∫
G

k(g−1g̃)f(g̃)dg̃ , (53)

with dg̃ the left Haar measure on G.

A note on implementation Note that also these layers can be implemented
using ConvdD operators by making a bank of transformed convolution kernels,

27

and by merging the discretized H axis with the channel axis as to move inte-
gration over H into the summation over the channels in the ConvdD operator.

Consider the G = SE(2) case. Now the feature maps are three-dimensional
and assign to every possible translation and rotation a feature value. The ker-
nels are then also three-dimensional k : R2×S1 → RNl+1×Nl and assign to every
relative position and orientation a feature transformation. In numerical imple-
mentations we discretize the domain X and the integral becomes a summation.
If we decouple the convolution in a spatial and a rotation part it is given for
SE(2) as

(Kf)(x, θ) =

∫
R2

∫
S1

k(R−1θ (x̃− x), θ̃ − θ)f(x̃)dx̃θ̃ . (54)

In a numerical discretization with Nh elements sampled on the H axis, this
would be implemented with Conv2d with a bank of transformed filters, denoted
with K : R2 → R(NNl+1)×(NNl), and of which also the the H and feature axis
of the input are merged. I.e., usually the feature map f would be stored as a

tensor in RNx×Ny×Nh×Nl that represents a function R2 ×H → Nl.

3.4.4 Projection layer (X = G, Y = Rd)

By mapping backing to planar feature maps L2(Rd) one obtains locally H-
invariant feature maps given as follows.

Definition 3.4 (Projection layer (X = G, Y = Rd)). A projection layer maps
between G-feature maps in L2(G) back to planar feature maps in L2(Rd). It
follows the general form of the layer as given by Eq. (46), with K a pooling over
H given bya

(Kf)(g) =

∫
H

f(x, g̃)dh̃ . (55)

aActually it may still include an isotropic kernel that is constant over the h axis. I will
make this precise in a future version of the notes.

3.4.5 Global pooling (X = G, Y = ∅)

Often one is interested in building invariant architectures, rather than equivari-
ant. Invariance to all transformations in G is achieved by mean pooling over the
full group G, in a similar way as one usually achieves global translation invari-
ance by mean or max pooling over the spatial axes in feature maps. Namely, in
this case H = G would be the group itself and thus the kernel constraint tells
us that the kernel is constant over G, i.e., ∀g∈Gk(e) = k(g) = c for some c ∈ R.
Instead of using this trival k in the equation we may simply define gobal pooling
as follows.

28

Definition 3.5 (Global pooling layer (Y = ∅)). A gobal pooling layer maps
any feature map in L2(X) back to a single scalar value. It follows the general
form of the layer as given by Eq. (46), with K a pooling over X

(Kf) =

∫
X

f(x)dµX(x) . (56)

3.5 Designing equivariant neural networks

Networks build with isotropic Rd layers follow the exact same structure as stan-
dard CNNs and exactly the same in terms of computational complexity. How-
ever, these isotropic CNNs are guaranteed to be equivariant roto-translations
whereas the classical ones only to translations. This comes at the cost of ex-
pressiveness as the kernels are constraint to be isotropic.

The most expressive networks are build with group equivariant layers which
have no constraints imposed on them (i.e. Y = G). Such networks are re-
ferred to as group convolutional neural networks as the group convolution layer
(Definition 3.3) dominates those networks. No constraints means Y = G, i.e.,
lifting the data to G-feature maps instead of the standard Rd-feature maps. The
general structure for problems like segmentation and classification is then

Rd-feature map
lifting layer→ G-feature map

repeated g-conv layers→

G-feature map
projection layer→ R2-feature map (segmentation) ,

and

Rd-feature map
lifting layer→ G-feature map

repeated g-conv layers→

G-feature map
global G-pooling→ scalar number (classification) .

It is important to remark that, even when the problem at hand does not re-
quire full group equivariance/invariance, group equivariant layers are still ben-
eficial. This is due to the weightsharing property over groups G larger than
translations, and the fact that the higher dimensional kernels (function over G
instead of Rd) can express more complicated patterns. E.g., computer vision
tasks are often not truely rotation invariant as there is often a horizon and a
direction of gravity that aligns objects (people typically appear upright in im-
ages). Nevertheless, the core features (edges, corners, ...) that make up the
more high level objects can appear under all possible orientations or scales in
images. The higher level G-conv kernels then can describe advanced patterns
in terms of configurations of features at both positions/translations and orien-
tations/rotations relative to each other. This solves the ”Picasso problem” in
an equivariant manner: when detecting a face, the eyes and nose all have to be
at the right place and right orientation, and not just the right place.

29

Part II

Steerable group convolutional
neural networks
In this part we will cover a particular class of roto-translation equivariant group
convolutions called steerable group convolutions. Steerable group convolutions
still fall in the class of general equivariant operators as presented in Chapter 3,
they are linear and equivariant and thus group convolutions (Theorem 3.2).
What makes them special, however, is the fact that they enable implementations
of group convolutions without having to discretize the sub-group of rotations
H = SO(d).

The property that discretizations of SO(d) can now be avoided is particularly
useful in the three-dimensional case. Whereas for d = 2 we can discretize the
rotation group with arbitrary precision, and it will create a discrete subset of
points which is again a (sub)group. We can then guarantee5 equivariance to
the subgroup. For SO(3) we do not have the luxery that any discretization of
SO(2) (as a set) is again a subgroup. We could e.g. make a grid of N arbitrary
elements, but this would not form a discrete group (we do not necessarily have
g · g̃ ∈ G for g, g̃ ∈ G with G discretization of G.). We would then have to resort
to interpolation on SO(3) which can be expensive and it introduces numerical
errors. Only a few special cases N = 12, 24, or 60) for which we can make a
discrete subgroup. E.g., we could discretize SO(3) with the symmetries of a
cube (N = 24). This is a closed subgroup and it would guarantee equivariance
as no interpolation would have to be done. It would however, only be equivariant
to this subgroup and not the full SO(3).

Steerable methods avoid a discretization of SO(d) by means of irreducible
representations, a type of representations that allows for Fourier theory on Lie
groups. We will introduce the notion of irreducible representations shortly. We
begin with Section 4 introducing a new set of group theoretical definitions that
allow us to formalize the notion of steerability. As done before in Part I, we will
accompany the definitions with examples and follow it with a section dedicated
to discussion of the theory in a deep learning context in Section 5.

5Up to spatial interpolation artifacts.

30

4 Mathematical tools: representation theory for
SO(3) and the Clebsch-Gordan tensor product

In this section we introduce the mathematical tools and intuition for steer-
able methods. It is heavily influenced by works such as [Thomas et al., 2018,
Anderson et al., 2019, Fuchs et al., 2020], which the reader may appreciate as
excellent alternative resources6 to get acquainted with the group/representation
theory used in steerable methods. We focus on the following main conceptsThe
main concepts

1. Steerable vectors, Wigner-D matrices and irreducible representations (Sec-
tion 4.2). Whereas regular NNs work with feature vectors whose elements
are scalars, our steerable NNs work with feature vectors consisting of steer-
able feature vectors. Steerable feature vectors are vectors that transform
via so-called Wigner-D matrices, which are representations of the orthog-
onal group O(3). Wigner-D matrices are the smallest possible group rep-
resentations and can be used to define any representation (or conversely,
any representation can be reduced to a tensor product of Wigner-D matri-
ces via a change of basis). As such, the Wigner-D matrices are irreducible
representations.

2. Spherical harmonics (Section 4.3). Spherical harmonics are a class of func-
tions on the sphere S2 and can be thought of as a Fourier basis on the
sphere. We show that spherical harmonics are steered by the Wigner-D
matrices and interpret steerable vectors as functions on S2. Moreover,
spherical harmonics allow the embedding of three-dimensional displace-
ment vectors into arbitrarily large steerable vectors.

3. Clebsch-Gordan tensor product and steerable linear layers (Section 4.4).
In a regular NN one maps between input and output vector spaces linearly
via matrix vector multiplication and applies non-linearities afterwards. In
steerable NNs one maps between steerable input and steerable output
vector spaces via the Clebsch-Gordan tensor product. Akin to the learn-
able weight matrix in regular NNs, the learnable Glebsch-Gordan tensor
product is the workhorse of our steerable NNs.

After these concepts are introduced we will in Section 5 revisit the convolu-
tion operator in the light of the steerable, group theoretical viewpoint that we
take in this paper. In particular, we show that steerable group convolutions are
equivalent to linear group convolutions with convolution kernels expressed in a
spherical harmonic basis.

6Each of these works presents unique view points that greatly influenced the writing of
this appendix.

31

4.1 The groups E(3) and O(3) and homogeneous space S2

4.1.1 The groups E(3) and O(3)

The Euclidean group E(3) In the steerable setting, we are interested in
the group of three-dimensional translations, rotations, and reflections which
is denoted with E(3), the 3D Euclidean group. It is an affine group E(3) =
(Rd,+)oO(3) that is slightly larger than the previuosly discussed group SE(3);
the subgroup O(3) also contains reflections (det R = −1. The group structure
(product, action on Rd is otherwise the same.

The orthogonal group O(3) and special orthogonal group SO(3). The
group E(3) = R3 o O(3) is a semi-direct product of the group of translations
R3 with the group of orthogonal transformations O(3). This means that we
can conveniently decompose E(3)-transformations in an O(3)-transformation
(rotation and/or reflection) followed by a translation. As such we can focus on
the more complicated structure of O(3), as the translation part can be dealt
with using the standard machinery (e.g. the use of Conv3D).

4.1.2 The sphere S2 is a homogeneous space of O(3).

The sphere is not a group as we cannot define a group product on S2 that
satisfies the group axioms. It can be convenient to treat it as a homogeneous
space of the groups O(3) or SO(3). The sphere S2 is a homogeneous space of
the rotation group O(3) since any point on the sphere can be reached via the
rotation and/or reflection of some reference vector.

Consider for example an XYX parametrisation of SO(3) rotations in which
three rotations are applied one after another via

Rα,β,γ = Rα,nx
Rβ,ny

Rγ,nx
, (57)

with nx and ny denoting unit vectors along the x and y axis, and Rα,nx
denotes

a rotation of α degrees around axis nx. We can model points on the sphere in
a similar way via Euler angles via

nα,β := Rα,β,0nx . (58)

So, with two rotation angles, any point on the sphere can be reached. In the
above we set γ = 0 in the parametrisation of the rotation matrix (an element
from SO(3)) that rotates the reference vector nx, but it should be clear that
with any γ the same point nα,γ is reached. This means that there are many
group elements in SO(3) that all map nx to the same point on the sphere. These
elements form the subgroup H = StabSO(3)(nx) by which we can identify the
sphere with the quotient space S2 ≡ SO(3)/SO(2).

32

4.2 Steerable vectors, Wigner-D matrices and irreducible
representations

In Part I we defined CNNs for signal data by constraining linear layers K :
L2(X)→ L2(Y) to be equivariant to the regular representation Lg of G. Now,
in this Part II, we follow a similar construction. However, now we consider
linear maps K : R2l+1 → R2l+1 between a special class (2l + 1)-dimensional
vector spaces -which we call steerable vector spaces- and constrain these maps
to be equivariant to the irreducible representations of G. Before we explain this
in technical details, we remark the following.

Definition 4.1 (Equivalence of matrix representations). Any two matrix rep-
resentations D(g) and D′(g) of a group G are equivalent if they relate via a
similarity transform

D′(g) = Q−1D(g)Q ,

in which Q carries out the change of basis.

Definition 4.2 (Reducible/irreducible matrix representation). A matrix repre-
sentation is called reducible if it can be written as

D(g) = Q−1(D1(g)⊕D2(g))Q = Q−1
(

D1(g) 0
0 D2(g)

)
Q ,

in which Q carries out a change of basis. If the matrices D1 and D2 are not
reducible they are called irreducible representations (irreps).

Wigner-D matrices are irreducible representations of SO(3) For SO(3)
there exists a class of matrix representations, indexed with their order l ≥ 0,
which act on vector spaces of dimension 2l+1. These representations are called
Wigner-D matrices and we denote them with D(l)(g). The use of Wigner-D
matrices is motivated by the fact that any matrix representation D(g) of SO(3)
that acts on some vector space V can be “reduced” to an equivalent block
diagonal matrix representation with Wigner-D matrices along the diagonal:

D(g) = Q−1(D(l1)(g)⊕D(l2)(g)⊕ . . .)Q = Q−1

D(l1)(g)
D(l2)(g)

. . .

Q ,

(59)
with Q the change of basis that makes them equivalent. The individual Wigner-
D matrices themselves cannot be reduced and are hence irreducible representa-
tions of SO(3). Thus, since the block diagonal representations are equivalent to
D we may as well work with them instead. This is convenient since each block,
i.e., each Wigner-D matrix D(li) in the diagonalization, only acts on a sub-space
Vl1 of V . As such we can factorize V = Vl1 ⊕ Vl2 ⊕

33

Definition 4.3 (Wigner-D matrix). The Wigner-D matrices of type-l are the
irreducible (2l+1) matrix representations of SO(3). A Wigner-D matrix of type
l as a function of g ∈ G will be denoted with D(l)(g).

Definition 4.4 (Wigner-D functions). The (2l+1)×(2l+1) components of the
type-l Wigner-D matrices will be referred to as the type-l Wigner-D functions.

The Wigner-D functions are denoted with D
(l)
mn with m and n row and column

index respectively.

Steerable vectors Since the sub-vector spaces Vl1 transform independently
from one another, we will threat them as canonical objects (or channels) that
deserve a special name. We will refer to these sub-spaces as steerable vector
spaces.

Definition 4.5 (Steerable vector spaces and steerable vectors). The (2l + 1)-
dimensional vector space on which a Wigner-D matrix of order l acts will
be called a type l steerable vector space and is denoted with Vl. A (2l + 1)-
dimensional vector v ∈ Vl will be called a type-l vector.

E.g., a type-3 vector h ∈ V3 is transformed by g ∈ SO(3) via h 7→ D3(g)h. We
remark that this definition is equivalent to the definition of steerable functions
commonly used in computer vision [Freeman et al., 1991, Hel-Or and Teo, 1996]
via the viewpoint that steerable vectors can be regarded as the basis coefficients
of a function expanded in a spherical harmonic basis. We elicit this viewpoint
in Sec. 4.3 and ??.

Example 4.1 (Steerable vector spaces of type 0 and 1). At this point we are
already familiar with type-0 and type-1 steerable vector spaces. Namely, type-0
vectors h ∈ V0 = R are scalars, which are invariant to transformations g ∈ O(3),
i.e., D0(g)h = h. Type-1 features are vectors h ∈ R3 which transform directly
via the matrix representation of the group, i.e., D1(g)h = Rh.

Wigner-D matrices adapted to O(3) The Wigner-D matrices are the irre-
ducible representations of SO(3), but we can easily adapt these representations
to be suitable for O(3) by including the group of reflections as a direct prod-
uct. We will still refer to these representations as Wigner-D matrices in the
entirety of this work, opting to avoid the distinction in favor of clarity of ex-
position. We further remark that explicit forms of the Wigner-D matrices can
e.g. be found books such as [Sakurai and Napolitano, 2017] and their numerical
implementations in code libraries such as the e3nn library [Geiger et al., 2021].

4.3 Fourier transform on S2 and SO(3)

In Section 5 we will continue the discussion on group equivariant deep learning
architectures, where we will place the content of this chapter in context. When
it comes to steerable group convolutions there are two mathematical tools that

34

need to be understood: the Fourier transform on SO(3) and the Clebsch-Gordan
tensor product. Both allow us to construct operators that map from one steer-
able vector space to another, and we will use them in Section 5 to build steerable
SO(3) and SE(3) group convolutions respectively. So, let us start by introduc-
ing Fourier theory on SO(3), and continue with the Clebsch-Gordan product in
Section 4.4.

4.3.1 Spherical Harmonics

Related to the Wigner-D matrices and their steerable vector spaces are the
spherical harmonics7. Spherical harmonics are a class of functions on the sphere
S2, akin to the familiar circular harmonics that are best known as the 1D Fourier
basis. As with a Fourier basis, spherical harmonics form an orthonormal basis
for functions on S2. In this work we use the real-valued spherical harmonics

and denote them with Y
(l)
m : S2 → R.

One can also think of spherical harmonics as functions Ỹ
(l)
m : SO(3)→ R on

SO(3) that are invariant to a subgroup of rotations via

Y (l)
m (nα,β) = Y (l)

m (Rα,β,γnx) =: Ỹ (l)
m (Rα,β,γ) ,

in which we used the parametrisation for S2 and O(3) given in (5.1) and (57)

respectively. Then, by definition, Ỹ
(l)
m is invariant with respect to rotation angle

γ, i.e.., ∀γ∈[0,2π) : Ỹ
(l)
m (Rα,β,γ) = Ỹ

(l)
m (Rα,β,0). This viewpoint of regarding

the spherical harmonics as γ-invariant functions on SO(3) helps us to draw the

connection to the Wigner-D functions D
(l)
mn that make up the 2l + 1 × 2l + 1

elements of the Wigner-D matrices. Namely, the functions in the n = 0 column
of Wigner-D matrices are also γ-invariant and, in fact, correspond (up to a
normalisation factor) to the spherical harmonics via

Y (l)
m (nα,β) =

1√
2l + 1

D
(l)
m0(Rα,β,γ) . (60)

Thus, spherical harmonics Y
(l)
m are Wigner-D functions. In fact, each column

of Wigner-D functions in D(l) is acted upon independently from one another
via the Wigner-D matrix8. It follows that then that these column vectors are
steerable vectors, as we explain next.

The embedding of a vector n ∈ S2 in spherical harmonics is equivariant
Let

a(l)(n) := (Y
(l)
−l (n), . . . , Y

(l)
l (n))T

be the embedding of a direction vector n ∈ S2 in spherical harmonics. Then
this vector embedding is equivariant as it satisfies

∀R̃∈SO(3) ∀n∈S2 : a(l)(R̃n) = D(l)(R̃)a(l)(n) . (61)

7Solutions to Laplace’s equation are called harmonics. Solutions of Laplace’s equation on
the sphere are therefore called spherical harmonics.

8See vec(D(l)(g)D(l)(g̃)I) = (I⊗D(l)(g−1)) vec(D(l)(g)).

35

This is derived by Using the S2 and SO(3) parametrization of (5.1) and (57)
via

a(l)(R̃nα,β) =

Y

(l)
−l (R̃nα,β)

...

Y
(l)
l (R̃nα,β)

 ?
=

D

(l)
−l0(R̃Rα,β,γ)

...

D
(l)
l0 (R̃Rα,β,γ)

∗
= D(l)(R̃)

D

(l)
−l0(Rα,β,γ)

...

D
(l)
l0 (Rα,β,γ)

 = D(l)(R′)

Y

(l)
−l (R′nα,β)

...

Y
(l)
l (R′nα,β)

= D(l)(R′)a(l)(nα,β) ,

where at
?
= we used that the spherical harmonics are the central column of the

Wigner-D matrices, and at
∗
= we use that D(l)(g)D(l)(g̃) = D(l)(gg̃).

4.3.2 Irreducible representations as a Fourier basis

Fourier transform on S2 Just like the 1D Fourier basis forms a complete

orthonormal basis for 1D functions, the spherical harmonics Y
(l)
m form an or-

thonormal basis for L2(S2), the space of square integrable functions on the
sphere. In other words, any function on the sphere can be represented by a
steerable vector a ∈ V0 ⊕ V1 ⊕ . . . when it is expressed in a spherical harmonic
basis via

f(n) =
∑
l≥0

l∑
m=−l

a(l)m Y
(l)
m (n) . (62)

Since spherical harmonics form an orthonormal basis, the coefficient vector a
can directly be obtained taking L2(S2)-inner products of the function f with
the spherical harmonics, i.e.,

a(l)m = (f, Y (l)
m)L2(S2) =

∫
S2

f(n)Y (l)
m (n)dn . (63)

Equation (63) is sometimes referred to as the Fourier transform on S2, and
Eq. (62) as the inverse spherical Fourier transform. Thus, one can identify
steerable vectors a with functions on the sphere S2 via the inverse spherical
Fourier transform (Eq. (63). For notational convenience we will define the
spherical Fourier transform as follows.

36

Definition 4.6 (Spherical Fourier transform). Let f ∈ L2(S2) be a spherical

signal and let f̂(l) ∈ R2l+1 denote the vector of Fourier coefficients of order
l. We may refer to l as the frequency index. The forward and inverse Fourier
transform are respectively given by

f̂(l) =

∫
S2

f(n)Y (l)(n)dn (64)

f(n) =
∑
l≥0

f̂(l)TY (l)(n) , (65)

with Y (l) = (Y
(l)
−l , . . . , Y

(l)
l)T ∈ L2(S2)2l+1 the vector of spherical harmonics.

Exercise 4.1 (Shift property). Show that the spherical Fourier transform is
SO(3) equivariant via

L̂gf(l) = D(l)(g)f̂(l) .

Fourier transform on SO(3) In order to draw a connection between regular
G-CNNs and steerable G-CNNs, as we will in Section 5, it is important to under-
stand that steerable vectors may also represent functions on the group SO(3)
via an SO(3)-Fourier transform. Namely, the full set of Wigner-D functions

D
(l)
mn form an orthonormal basis for L2(SO(3)) that allows for a Fourier trans-

form that maps functions in L2(SO(3)) to steerable vectors in Vl ⊕ Vl ⊕ · · · ⊕ Vl
(2l+1) times

(each of the 2l1 columns is an independent steerable vector space). The forward
and inverse Fourier transform on O(3) are respectively given by

f̂ (l)mn =

∫
SO(3)

f(g)D(l)
mn(g)dg , (66)

f(g) =
∑
l≥0

l∑
m=−l

f̂ (l)mnD
(l)
mn(g−1) , (67)

with dg the Haar measure on SO(3) group. We will apply the same notation
as in Definition 4.6, however, now the Fourier coefficients are not vector valued
but matrix valued.

Definition 4.7 (SO(3) Fourier transform). Let f ∈ L2(SO(3)) be a spherical

signal and let f̂(l) ∈ R2l+1×2l+1 denote the matrix of Fourier coefficients of
order l. The number l may be referred to as frequency index. The forward and
inverse Fourier transform are respectively given by

f̂(l) =

∫
SO(3)

f(g)D(l)(g)dg , (68)

f(g) =
∑
l≥0

Tr(f̂(l)D(l)(g−1)) . (69)

37

Generalized Fourier theorem Now that we have properly defined the Fourier
transforms on S2 and SO(3), we can show that they have similar properties
as the Fourier transform on Rd. For example, as already hinted before with
the equivariance property of spherical hamronic embeddings (Exercise 4.1), the
SO(3) Fourier transform is equivariant to the action of the group as follows.

Lemma 4.1 (Shift property). Let Lg denote the left-regular representation of

SO(3) on L2(SO(3)) and f̂ denote the SO(3) Fourier transform SO(3) (Defini-
tion 4.7). The SO(3) Fourier transform is equivariant via

L̂gf(l) = D(l)(g)f̂(l) . (70)

Exercise 4.2. Proof Lemma 4.1. Tip apply a substitution of variables in the
intregral of Eq. (68).

More importantly, we have a Fourier convolution theorem on SO(3), that states
that a convolution/correlation between two signals can be expressed as an
element-wise multiplication of matrix-valued Fourier coefficients.

Theorem 4.1 (Convolution theorem on SO(3)). Let k, f ∈ L2(SO(3)) and

let k̂(l), f̂(l) denote their matrix valued Fourier coefficients. Then the Fourier
transform of a (group) correlation of a k with f is given by

k̂ ? f(l) = f̂(l)k̂(l)T . (71)

Exercise 4.3 (Proof of Convolution Theorem). Proof Theorem 4.1.

4.4 Clebsch-Gordan product and steerable linear layers

In a regular NN one maps between input and output vector spaces linearly via
matrix-vector multiplication and applies non-linearities afterwards (Eq. 42). In
a steerable NN one maps between steerable input and output vector spaces via
the Clebsch-Gordan tensor product and applies non-linearities afterwards. Akin
to the learnable weight matrix in regular NNs, the learnable Glebsch-Gordan
tensor product will be the main workhorse of the soon to-be-introduced steerable
NNs.

Clebsch-Gordan tensor product The Clebsch-Gordan (CG) tensor prod-
uct allows us to map between steerale input and output spaces. While there is
much to be said about tensors and tensor products in general, we here intend
to focus on the core intuition. In general, a tensor product involves the multi-
plication between all components of two input vectors. E.g., with two vectors
h1 ∈ Rd1 and h2 ∈ Rd2 , the tensor product is given by

h1 ⊗ h2 = h1h
T
2 =

h1h1 h1h2 . . .
h2h1 h2h2 . . .

...
...

. . .

 ,

38

which we can flatten into a d1d2-dimensional vector via an operation which we
denote with vec(h1 ⊗ h2).

In our steerable setting we would like to work exclusively with steerable
vectors and as such we would like for any two steerable vectors h̃1 ∈ Vl1 and
h̃2 ∈ Vl2 , that the tensor product’s output is again steerable with a O(3) repre-
sentation D(g) such that the following equivariance constraint is satisfied:

D(g)(h̃1 ⊗ h̃2) = (D(l1)(g)h̃1)⊗ (D(l2)(g)h̃2) . (72)

Via the identity vec(AXB) = (BT ⊗A) vec(X), we can show that the output
is indeed steerable:

vec
(

(D(l1)(g)h̃1)(D(l2)(g)h̃2)T
)

= vec
(

D(l1)(g)h̃1h̃
T
2 D(l2)T (g)

)
=
(
D(l2)(g)⊗D(l1)(g)

)
vec
(

h̃1h̃
T
2

)
.

The resulting vector vec(h̃1 ⊗ h̃2) of a tensor product with steerable vectors is
again steerable by a representation D(g) = D(l2)(g)⊗D(l1)(g). Since any matrix
representation of SO(3) can be reduced to a direct sum of Wigner-D matrices
(see Eq. (59)), the resulting vector can be organised via a change of basis into
parts that individually transform via Wigner-D matrices of different type. I.e.,
the tensor product can be defined such that h̃ = vec(h̃1⊗h̃2) ∈ V = V0⊕V1⊕. . . ,
with Vl the steerable sub-vector spaces of type l.

With the CG tensor product we directly obtain the vector components for
the steerable sub-vectors of type l.

Definition 4.8 (Clebsch-Gordan tensor product). Let h̃(l) ∈ Vl = R2l+1 denote

a steerable vector of type l and h
(l)
m its components with m = −l,−l + 1, . . . , l.

Then the Clebsch-Gordan tensor product is defined is a tensor product such tat
the m-th component of the type l sub-vector of the output of the tensor product
between two steerable vectors of type l1 and l2 is given by

(h̃(l1) ⊗cg h̃(l2))(l)m =

l1∑
m1=−l1

l2∑
m2=−l2

C
(l,m)
(l1,m1)(l2,m2)

h(l1)m1
h(l2)m2

, (73)

in which C
(l,m)
(l1,m1)(l2,m2)

are the Clebsch-Gordan coefficients. The l-th output

vector (h̃(l1) ⊗cg h̃(l2))(l) ∈ R2l+1 is a type-l steerable vector.

The CG tensor product is a sparse tensor product, as generally many of the

C
(l,m)
(l1,m1)(l2,m2)

components are zero. Most notably, C
(l,m)
(l1,m1)(l2,m2)

= 0 whenever

l < |l1 − l2| or l > l1 + l2. E.g., a type-0 and a type-1 feature vector cannot
create a type-2 feature vector. Well known examples of the CG product are the
scalar product (l1 = 0, l2 = 1, l = 1), which takes as input a scalar and a type-1
vector to generate a type-1 vector, the dot product (l1 = 1, l2 = 1, l = 0) and
cross product (l1 = 1, l2 = 1, l = 1).

39

Weight-parametrized Clebsch-Gordan tensor product The CG tensor
product thus allows us to map two steerable input vectors to a new output
vector and can furthermore be extended to define a tensor product between
steerable vectors of mixed types. The CG tensor product can be parametrised
by weights where the product is scaled with some weight w for each triplet of
types (l1, l2, l) for which the CG coefficients are non-zero9. We indicate such
CG tensor products with ⊗W

cg .

Definition 4.9 (Weight-parametrized Clebsch-Gordan tensor product). Let
⊗W
cg define the weight-parametrized Clebsch-Gordan tensor product via

(h̃(l1) ⊗W
cg h̃(l2))(l)m =

l1∑
m1=−l1

l2∑
m2=−l2

w(l1,l2,l)C
(l,m)
(l1,m1)(l2,m2)

h(l1)m1
h(l2)m2

, (74)

in which W denotes the collection of weights w(l1,l2,l) for each path.

Each path (l1, l2, l) only gets a single weight w(l1,l2,l) as to ensure that the
resulting steerable vector can again be interpreted as the Fourier transform
of a spherical signal. In Section 5 we will make this Fourier interpretation
more explicit by considering both spherical convolution as well as SE(3) group
convolutions.

Steerable linear layer While in principle the CG tensor product takes two
steerable vectors as input, we can decide to use it with one of its input vectors
“fixed”. The CG tensor product can then be regarded as a linear layer that
maps between two steerable vector spaces and we denote this

Wãh̃ := h̃⊗W
cg ã ,

with ã the steerable vector that is considered to be fixed. With this viewpoint
we can design NNs in the same way as we are used to with regular linear layers
(Eq. (42)), and establish clear analogies with (point) convolution layers (Sec. ??
of the main paper).

Band-limiting We end with some notes on band-limiting (controlling the
maximum frequency l). While in general the CG tensor product between two
steerable vectors of type l1 and l2 can contain steerable vectors up to degree
l = l1 + l2, one typically “band-limits” the output vector by only considering
the steerable vectors up to some degree lmax.

The amount of interaction between the steerable sub-vectors in the hidden
representations of degree h̃ ∈ VL=lf = V0⊕V1⊕. . . Vlf is furthermore determined
by the maximum order la of the steerable vector ã on which the steerable linear
layer is conditioned. Namely, the CG tensor product only produces type l

9In terms of the e3nn library [Geiger et al., 2021] one then says a path exists between these
3 types.

40

steerable sub-vectors for |lf − la| ≥ l ≤ |lf + la|. For example, it is not sensible
to embed positions as steerable vectors up to order la = 5 when the hidden
representations are of degree lf = 2; the lowest steerable vector type that can
be produced with the CG product of a l = 5 sub-vector of ã with any sub-
vector of the hidden representation vector will be l = 3 and since the hidden
representations are band-limited to a maximum type of lf = 2 higher order
vectors will be ignored.

41

5 Steerable group convolutions

We have now introduced all mathematical preliminaries for building steerable
group convolutional neural networks. We will start with Section 5.1 with the S2

and SO(3) case and build steerable group convolution layers using the Fourier
transform on SO(3). In Section 5.2 we will then build steerable G-CNNs for
SE(3). Before we start, we reiterate the message that steerable group con-
volutions are important as they do not require a discretization of the domain
SO(3).

5.1 SO(3) Equivariant Steerable Group Convolutions for
Spherical Data

Following Theorem 3.2, i.e., the most important insight of these notes that
every equivariant linear layer between signals is a group convolution, we begin
by identifying the relevant cases for SO(3).

The setting is as follows. We assume that our data is provided as a (sampled)
function on the sphere. So our input feature maps are in X = L2(S2). We then
can consider the following cases for the domains on which the represent the
output feature maps:

• Y = S2: We can build G-CNNs that work exclusively with spherical
feature maps. As we will see, this implies that only isotropic convolution
kernels can be used.

• Y = SO(3): We can lift the data to SO(3)-feature maps. This way, there
are no constraints on the convolution kernels.

• Y = SO(3)/SO(3): We can pool over the entire domain of the input as
to generate a single scalar number.

Before we proceed, recall from Section 4.1.2 that S2 is a homogeneous space
of SO(3). Furthermore, recall the (α, β, γ) parametrization for SO(3) and S2

given respectively by

Rα,β,γ = Rα,nx
Rβ,ny

Rγ,nx
,

and
nα,β := Rα,β,0nx .

5.1.1 Steerable isotropic S2 convolutions (X = Y = S2)

These are layers of the form Eq. 48, with K a convolution on the sphere, given
by

∀γ∈SO(2) : (k ? f)(n(α,β) = (L(α,β,γ)k, f)L2(S2) . (75)

The definition of Eq. (75) requires invariance to γ rotations as we want the
output signal again to be a function on the sphere. We can/should guarantee

42

this by making the kernel symmetric around the reference axis nx:

∀α∈SO(2) : k(R(α,0,0)nx) = k(nx).

This is a consequence of item 1 of Theorem 3.2. Namely S2 ≡ SO(3)/H with
H = StabSO(3)(nx). The question then is, how do we parametrize k such that
the constraint is satisfied? The answer is naturally given in terms of SO(3)
convolutions as follows.

5.1.2 Fourier-based Group convolutions in vectorized form

Recall the convolution theorem (Theorem 4.1). In the following we are going to
analyze what the kernels in the Fourier domain look like, and how they can be
constrained to generate either signals on S2 or SO(3). In our analyses we will
focus on signals and kernels that only contain frequency l = 1 components and
end with formalizing the case for all l.

The convolution theorem states that we can compute the convolution of k
with f by computing the forward Fourier transform of input f and perform
convolution as a multiplication in the Fourier domain.

k̂ ? f(l) = f̂(l)k̂T (l) , (76)

with k̂ and f̂ respectively the Fourier representations of k. Let us further write
ŵ(l) ∈ R2l+1×2l1 to denote the learnable parameters that describe the convo-
lution kernel. In order for convenience of analyses, we will furthermore write
convolution as matrix-vector multiplication, by vectorizing the Fourier coeffi-
cient matrices. We thus write Eq. (5.1) as

vec(k̂ ? f)(l) = (ŵ(l)⊗ I) vec(f̂(l)) , (77)

where we use the identity vec(AB) = (BT ⊗ I) vec(A) for the vectorization of
products of matrices. Thus, we will represent signals on SO(3) via their flattened

Fourier coefficients, which are steerable vectors vec(f̂) ∈ Vl ⊕ Vl ⊕ · · · ⊕ Vl
2l+1 times

.

The simplified case of l = 1 To keep things intuitive we will focus on
the case of signals and convolution kernels that only contain frequency l = 1
components. Then, the SO(3) Fourier transform gives the components

vec(f̂) =

 f̂:,−1
f̂:,0
f̂:,+1

 , (78)

where we represent the Fourier coefficients as 9-dimensional vector in V1⊕V1⊕
V2 = R9 which contains the three columns of the SO(3) Fourier coefficient

matrix. Here f̂:,n denotes the n-th column of f̂ . Recall that if the input signal

43

is a function on the sphere, only the central column of f̂ is non-zero. We indicate
this by making coloring it red:

vec(f̂) =

 f̂:,−1
f̂:,0
f̂:,+1

 .

Now let’s make Eq. (5.1) explicit: k̂ ? f :,−1
k̂ ? f :,0
k̂ ? f :,+1

 =

w−1,−1I w−1,0I w−1,1I
w0,−1I w0,0I w0,1I
w1,−1I w1,0I w1,1I

 f̂:,−1
f̂:,0
f̂:,+1

 , (79)

where we have marked the parts of the weight matrix red that play no role in
the multiplication in the S2 case for which only f̂:,0 are non-zero. The color
shows us that the kernel only consists of spherical harmonics and thus: if the
input is in L2(S2), so will the convolution kernel be!

Eq. (80) shows us that an SO(3) group convolution with a kernel k ∈ L2(S2)
does not necessarily give us a signal on the sphere again. If we want this, then
this means that the output should only have non-zero coefficients for n = 0. We
denote this by coloring blue the weights of the kernel that induce this k̂ ? f :,−1

k̂ ? f :,0
k̂ ? f :,+1

 =

w−1,−1I w−1,0I w−1,1I
w0,−1I w0,0I w0,1I
w1,−1I w1,0I w1,1I

 f̂:,−1
f̂:,0
f̂:,+1

 , (80)

Through the above analysis we conclude the following.

44

Lemma 5.1. Consider the cases of SO(3) equivariant linear layers for signals on
X = S2 ≡ SO(3)/SO(2) or X = SO(3). Such convolutions can be performed
via the Fourier transform on SO(3)

k̂ ? f(l) = f̂(l)ŵT (l) ,

with ŵ(l) ∈ R2l+1×2l1 the learnable parameters of the convolution kernel. The
following can be said about the parametrization of the kernels through ŵ.

• Isotropic S2 kernel convolutions (X = Y = S2) For isotropic kernel
convolutions the kernel is parametrized by a single weight per frequency
l. Namely the only possibly non-zero component is ŵ00(l) and all others
have to be 0. This means that the kernels represent signals on the sphere
S2 that are symmetry around the nx axis, as required by Theorem 3.2.

• Lifting convolutions (X = S2, Y = SO(3)) For lifting convolutions the
kernel is parametrized by (2l + 1) learnable weights per frequency l. The
only possible non-zero weights are ŵ:,0, i.e., the central column (n = 0) of
ŵ(l). This means that the convolution kernels are unconstrained signals
on the sphere S2.

• Group convolution (X = Y = SO(3)) Group convolutions are
parametrized by (2l + 1) × (2l + 1) learnable weights per frequency l.
The kernels represent unconstrained functions on SO(3).

5.1.3 Conclusion

Convolutions on the sphere are naturally performed via the spherical, or SO(3),
Fourier transform. This requires no discretization at all and equivariance to
rotations is exact through the application of the Wigner-D matrices. That is,
the Fourier rerpresentations form steerable vector spaces that are steered by the
Wigner-D matrices.

What is currently missing in these notes, is, however, a discusion on how to
build deep G-CNNs with them. In particular in the context of the non-linearities
σ that we can apply. Namely, in the general formulation of Eq. (48), these are
applied in the signal domain which would require an inverse Fourier transform
and sampling the signal on a grid. Alternatively, one could define non-linearities
in the Fourier domain. I may discuss these in a future version of these notes,
for now please see the literature on steerable G-CNNs for details.

45

5.2 SE(3) Equivariant Steerable Group Convolutions

Our next case of steerable group convolutions will be for signals on Rd and
SE(3). This is where the Clebsch-Gordan tensor product comes into the picture.
What will be different to the regular group convolutional setting is that now we
do not treat SE(3)-feature maps as functions f : SE(3) → RN that map each
group element to a N -dimensional feature vector in RN , but instead consider
feature maps f : R3 → V , with V a steerable vector space, i.e., we define the
feature maps as vector-fields of steerable vectors. In the previous Section 5.1
we saw that steerable vectors can be treated as signals on S2 or SO(3) which
allow us to treat such vector fields of steerable vectors as functions that assign
to each location a function on SO(3). To come to this intuition, we start off
with thte case of regular SE(3) convolutions with kernels expanded in a basis
of spherical harmonics.

5.2.1 Steerable functions.

Before we proceed we revisit the definition of steerability as it is commonly
given in the computer vision field. Through the equivalence of steerable vectors
and spherical functions via the spherical Fourier transform, it is clear that our
definition of steerable vectors coincides with the more common definition of
steerable functions, as commonly used in computer vision [Freeman et al., 1991].
In this context, a function f is called steerable [Hel-Or and Teo, 1996] under a
transformation group G if any transformation g ∈ G on f can be written as
a linear combination of a fixed, finite dimensionla vector of n basis functions
Φ = (φi)

n
i=1:

Lgf =

n∑
i=1

αi(g)φi = αT (g)Φ , (81)

in which Lg is the left regular representation of the group G that performs the
transformation on f . In case of functions in a spherical harmonic basis, which
we denote with

fa =
∑
l≥0

l∑
m=−l

a(l)m Y
l
m(n) ,

it directly follows from Eq. (61) that they are steerable via

Lgfa(n) = fD(g)a(n) . (82)

In terms of the steerable function definition in Eq. (81), this means that α(g) =

D(g)a and Φ = (Y
(0)
0 , Y

(1)
−1 , Y

(1)
0 , . . .)T , i.e. the set of basis functions flattened

into a vector.

5.2.2 Lifting convolution (X = Rd, Y = SE(3))

The notion of steerability becomes particularly clear when viewed in the com-
puter vision context [Freeman et al., 1991], where one may be interested in de-

46

tecting visual features under arbitrary rotations. Let us revisit the case of 3D
cross-correlations of a kernel k : R3 → R with an input feature map f : R3 → R:

f ′(x) = (k ? f)(x) =

∫
R3

k(x′ − x)f(x′)dx′ . (83)

In many applications, we want to detect such patterns under arbitrary rotations.
For example, in 3D medical image data there is no preferred orientation and
features (such as blood vessels, lesions, ...) can appear under any angle, and the
same holds for particular atomic patterns in molecules. So ideally, one wants to
apply the convolution kernel under all such transformations:

f ′(x,R) =

∫
R3

k(R−1(x′ − x))f(x′)dx′ . (84)

By repeating the convolutions with rotated kernels we are able to detect the
presence of a certain feature at all possible angles. This describes a lifting group
correlation as defined in Definition 3.2 (feature maps are lifted from R3 to the
group SE(3)) and the subsequent layers should be defined by group convolutions
(cf. Chapter 3).

Regular vs Steerable Group convolutions. In regular group convolutional
neural networks one continues to work with such higher dimensional feature
maps in which the kernels are also functions on the group. The lifting and
subsequent group convolutions then all have the same form and are defined via
the group action on R3 and group product respectively via

f ′(g) =

∫
R3

k(g−1 · x′)f(x′)dx′ , (85)

f ′(g) =

∫
SE(3)

k(g−1 · g′)f(g′)dg′ , (86)

where g ∈ SE(3), dg the Haar measure on the group and where · in (85) and
(86) respectively denote the group action on R3 and group product of SE(3) (cf.
Section 4.1). Note that Eq. (85) is exactly the same as Eq. (84) but in different
notation.

The lifting group convolution thus generates a function on the joint space
of positions R3 and rotations SO(3). In numerical implementations, this space
needs to be discretised, i.e., for a particular finite grid of rotations we want to
store the results of the convolutions for each rotation R. This approach then
requires that the convolution kernel is continuous and can be sampled under all
transformations. Hence, such kernels can be expanded in a continuous basis such
as spherical harmonics [Weiler et al., 2018], B-splines [Bekkers, 2019] or they
can be parametrised via MLPs [Finzi et al., 2020]. Alternatively, the kernels
are only transformed via a sub-group of transformations in E(3) that leaves
the grid on which the kernel is defined intact, as in [Worrall and Brostow, 2018,
Winkels and Cohen, 2018]. An advantage of regular group convolution methods

47

is that normal point-wise activation functions can directly be applied to the
feature maps; a down-side is that these methods are only equivariant to the sub-
group on which they are discretised. When expressing the convolution kernel in
terms of spherical harmonics, however, there is no need for such a discretisation
at all and one can obtain the response of the convolution at any rotation R
after convolving with the basis functions. This works as follows.

5.2.3 From regular to steerable group convolutions: kernels in a
spherical harmonic basis.

Suppose a 3D convolution kernel that is expanded in a spherical harmonic basis
up to degree L as follows

k(x) = kc̃(‖x‖)(x) :=

L∑
l

l∑
m=−l

c(l)m (‖x‖)Y (l)
m

(
x
‖x‖

)
, (87)

with c̃ = (c
(0)
0 , c

(1)
−1, c

(1)
0 . . .)T the vector of basis coefficients that can depend on

‖x‖. The coefficients can e.g. be parametrised with an MLP that takes as input
‖x‖ and returns the coefficient vector. We note that such coefficients are then
O(3) invariant, i.e., ∀R∈O(3) : c̃(‖Rx‖) = c̃(‖x‖). Furthermore, we labelled
the vector with a “ ˜ ” to indicate it is a steerable vector as it represents the
coefficients relative to a spherical harmonic basis. It then follows (from Eq. (82))
that the kernel is steerable via

k(R−1x) = kD(R)c̃(‖x‖)(x) ,

i.e., via a transformation of the coefficient vector c̃ by it O(3) representation
D(R).

This steerability property, together with linearity of the convolutions and
basis expansion, implies that with such steerable convolution kernels we can
obtain their convolutional response at any rotation directly from convolutions
with the basis functions. Instead of first expanding the kernel in the basis by
taking a weighted sum of basis functions with their corresponding coefficients,
and only then doing the convolutions, we can change this order and first do
the convolution with the basis functions and sum afterwards. In doing so we

create a vector of responses f̃(x) = (f
(0)
0 (x), f

(1)
−1 (x), f

(1)
0 (x), . . .)T of which the

elements are given by

f (l)m (x) = ((clmY
(l)
m) ? f in)(x) (88)

=

∫
R3

c(l)m (‖x‖)Y (l)
m (x′ − x)f(x)dx .

Then the original Rd convolutional result with the kernel is obtained simply by
a sum over the vector components which we denote with SumReduce

l,m
as follows

f ′(x) = SumReduce
l,m

(f̃ ′(x)) :=

L∑
l

l∑
m=−l

f ′(l)m (x) .

48

If one were to be interested in the rotated filter response at x one can first
rotate the steerable vector f̃ ′(x) via the matrix representation D(R) and only
then do the reduction. I.e., once the convolutions of (88) are done the lifting
group convolution result is directly obtained via

f ′(x,R) = SumReduce
l,m

(D(R)f ′(x)) . (89)

This reduction with a multiplication with the Wigner-D matrices is in fact
a point-wise inverse Fourier transform, applied to the vector f ′(x) of Fourier
coefficients at location x!

5.2.4 Steerable group convolutions

When working with steerable convolution kernels one does not have to work
with a grid on O(3). There are reasons to avoid working with a grid on O(3)
as one cannot numerically obtain exact equivariance if the chosen grid is not a
sub-group of O(3). When limiting to a discrete subgroups one can guarantee
exact equivariance to the sub-group, but ideally one obtains equivariance to
the entire group O(3). Steerable methods provide a way to build neural net-
works entirely independent of any sampling on O(3), since, as we have seen,
steerable convolutions directly result in functions on the entire group O(3) via
steerable vectors. That is, at each location x we have a steerable vector f̃(x)
which represents a function on O(3) via the inverse Fourier transform given in
Definition. 4.7. In fact, the sum reduction in Eq. (89) corresponds to a discrete
inverse Fourier transform.

In the above example the input feature map was one that only provided a
single scalar value per location x, i.e. a type-0 steerable vector, and the output
was a steerable vector field containing steerable vectors up to type L. The
transition from type-0 vector field to a type-L vector field happened via tensor
products with steerable vectors of spherical harmonics, and this tensor product
was parametrised by the coefficients c̃. Suppose a convolution of a single type-l1
steerable input field with a convolution kernel that is expanded in a spherical

harmonic basis of only type l2 via k(x) =
∑l2
m=−l2 w(‖x‖)Y (l)

m

(
x
‖x‖

)
. The

kernel can then be represented as a steerable vector field in itself as k̃(x) =
w(‖x‖)ã(x), with ã the type-l2 spherical harmonic embedding. Such a steerable
convolution maps from input feature maps f̃ : R3 → Vl1 using a convolution
kernel k̃ : R3 → Vl2 to an output f̃ ′ : R3 → Vl via

f̃ ′(x) =

∫
R3

f̃(x)⊗w(‖x‖)
cg Y (l)

(
x′−x
‖x′−x‖

)
dx′ .

Here we assumed steerable feature vector fields of a single type, but in general
such convolutions can map between vector fields of mixed type analogous to
the standard convolutional case in CNNs where mappings occur between multi-
channel type-0 vector fields.

49

5.2.5 Conclusion.

In conclusion, both steerable and regular group convolutions produce feature
maps on the entire group E(3) and they are equivalent when the regular con-
volution kernel is expanded in a steerable basis. In regular group convolutions,
the response is stored on a particular grid which is e.g. the Cartesian product
of a regular 3D grid with a particular discretisation of O(3). In regular group
convolutions, we directly index the responses with (x,R) ∈ E(3) 7→ f(x,R). In
steerable convolutions the filter responses x → f̃(x) are stored at each spatial
grid point x in steerable vectors f̃(x) from which functions on the full group O(3)
can be obtained via an inverse Fourier transform10. As such one recovers the
regular representation via (x,R) 7→ F−1[f̃(x)](R). Regular group convolutions
can however not be perfectly equivariant to all transformations in O(3) due to
discretisaton artifacts, or they are only equivariant to a discrete sub-group of
O(3). Steerable group convolutions on the other hand are exactly equivariant
to all transformations in O(3) via steerable representations of O(3).

10This Fourier transform enables working with classic point-wise activation functions that
need to be applied point-wise. One cannot readily apply activation functions such as ReLU
directly to the steerable coefficients, but one could sample the O(3) signal on a grid via the
inverse Fourier transform, apply the activation function, and transform back into the steerable
basis. This e.g. the approach taken in [?]. In this paper we work entirely in the steerable
domain (O(3) Fourier space) and work with gated non-linearities [Weiler et al., 2018].

50

6 Steerable graph neural networks and Point
Convolutions

Coming soon

51

Part III

Lie group equivariant neural
networks
Coming soon

References

[Anderson et al., 2019] Anderson, B., Hy, T. S., and Kondor, R. (2019). Cor-
morant: Covariant molecular neural networks. In Wallach, H., Larochelle, H.,
Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors, Advances
in Neural Information Processing Systems, volume 32. Curran Associates, Inc.

[Bekkers et al., 2015] Bekkers, E., Duits, R., and Loog, M. (2015). Training of
templates for object recognition in invertible orientation scores: Application
to optic nerve head detection in retinal images. In Tai, X.-C., Bae, E., Chan,
T. F., and Lysaker, M., editors, Energy Minimization Methods in Computer
Vision and Pattern Recognition, pages 464–477, Cham. Springer International
Publishing.

[Bekkers, 2019] Bekkers, E. J. (2019). B-spline cnns on lie groups. In Interna-
tional Conference on Learning Representations.

[Dehmamy et al., 2021] Dehmamy, N., Liu, Y., Walters, R., and Yu, R. (2021).
Lie algebra convolutional neural networks with automatic symmetry extrac-
tion.

[Finzi et al., 2020] Finzi, M., Stanton, S., Izmailov, P., and Wilson, A. G.
(2020). Generalizing convolutional neural networks for equivariance to lie
groups on arbitrary continuous data. In International Conference on Ma-
chine Learning, pages 3165–3176. PMLR.

[Finzi et al., 2021] Finzi, M., Welling, M., and Wilson, A. G. (2021). A practi-
cal method for constructing equivariant multilayer perceptrons for arbitrary
matrix groups. arXiv preprint arXiv:2104.09459.

[Freeman et al., 1991] Freeman, W. T., Adelson, E. H., et al. (1991). The de-
sign and use of steerable filters. IEEE Transactions on Pattern analysis and
machine intelligence, 13(9):891–906.

[Fuchs et al., 2020] Fuchs, F. B., Worrall, D. E., Fischer, V., and Welling, M.
(2020). Se (3)-transformers: 3d roto-translation equivariant attention net-
works. arXiv preprint arXiv:2006.10503.

[Geiger et al., 2021] Geiger, M., Smidt, T., M., A., Miller, B. K., Boomsma, W.,
Dice, B., Lapchevskyi, K., Weiler, M., Tyszkiewicz, M., Batzner, S., Frellsen,

52

J., Jung, N., Sanborn, S., Rackers, J., and Bailey, M. (2021). e3nn/e3nn:
2021-04-21.

[Hel-Or and Teo, 1996] Hel-Or, Y. and Teo, P. (1996). Canonical decomposi-
tion of steerable functions. In Proceedings CVPR IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pages 809–816.

[Hutchinson et al., 2021] Hutchinson, M. J., Le Lan, C., Zaidi, S., Dupont, E.,
Teh, Y. W., and Kim, H. (2021). Lietransformer: equivariant self-attention
for lie groups. In International Conference on Machine Learning, pages 4533–
4543. PMLR.

[Sakurai and Napolitano, 2017] Sakurai, J. J. and Napolitano, J. (2017). Mod-
ern Quantum Mechanics. Cambridge University Press, 2 edition.

[Thomas et al., 2018] Thomas, N., Smidt, T., Kearnes, S., Yang, L., Li, L.,
Kohlhoff, K., and Riley, P. (2018). Tensor field networks: Rotation-and
translation-equivariant neural networks for 3d point clouds. arXiv preprint
arXiv:1802.08219.

[Weiler et al., 2018] Weiler, M., Geiger, M., Welling, M., Boomsma, W., and
Cohen, T. S. (2018). 3d steerable cnns: Learning rotationally equivariant
features in volumetric data. In Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc.

[Winkels and Cohen, 2018] Winkels, M. and Cohen, T. S. (2018). 3d g-cnns
for pulmonary nodule detection. In International Conference on Medi- cal
Imaging with Deep Learning (MIDL).

[Worrall and Brostow, 2018] Worrall, D. and Brostow, G. (2018). Cubenet:
Equivariance to 3d rotation and translation. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 567–584.

53

