Radiotherapy induced cardiovascular toxicity: delineating hearts in 8000 patient CT scans

PhD Fellow: Nora Forbes^{1,2} (*nora.forbes*@*di.ku.dk*) Advisors: Sune Darkner², Ivan Vogelius¹, Jen Petersen^{1,2}, & Joanne Reekie³ **Collaborators:** Abraham Smith^{1,2}, & Cynthia Terrones Campos³

¹Department of Computer Science, University of Copenhagen ²Department of Oncology, Rigshospitalet ³Department of Infectious Diseases, Rigshospitalet

Purpose

- **Background:**
 - Cancer survivors experience ~10% increased risk of cardiovascular disease per gray of mean heart dose [1]
 - Mean heart dose is a proxy for substructure exposure [2]
- **Research goal:** Further describe the relationship between radiation and cardiovascular diseases to better inform treatment and ongoing care
 - Large retrospective cohort

- Across multiple diagnoses
- Detailed anatomic and dose data

Challenges:

- Approval, access, and curation of patient registry and electronic health records
- Segmentation of hearts in 8000 patients receiving radiation at Rigshospitalet

Execution

- **Method:** RootPainter model for heart segmentation [3]
- Impressive results in study of 900 hearts **Issue 1:** Islands predicted outside the heart

Validation

- **Question**: Is RootPainter good enough for fully automated large-scale analysis
- **Method**: Use a manual tool to review all 8000 segmentations
 - Viewing slices of CT overlaid with contour plus thickness projections
 - Delineation issues can be quickly identified (1-2 secs each = 2-4 hrs)

* < > + Q = Z 🕒

Segmentation 2/8212 Undecided

• Save only largest contiguous regions

- **Issue 2:** Manual bounding box required
 - Not feasible for 8000 images (30 sec each)
 - Small bounding box and sparse labels/corrections converted to a large randomly positioned bounding box and dense labels
 - Goal: learn to find the heart in the image and not in a small bounding box
- **Conclusion:** Appears to work well
 - Identical dice coefficients (0.961)

- **Issue 3:** Field of view extrapolation
 - RootPainter has never seen images without hearts
 - Patients included beyond chest irradiated diagnoses from training data

	Heart in view	Heart not in view	Total
Segmentation	5742	1715	7457
No segmentation	0	755	755
Total	5742	2470	8212

Conclusions

- With minimal time spent on manual assistance and review, we segmented 8000 images
 - 95% of segmentations in images containing heart were acceptable
 - 98% in trained diagnoses
 - Frequent causes of unacceptable segmentation: rare anatomy^A or pathology, artifacts^B, partial hearts^C
 - Most errors are minor^D and will have a small impact on dose calculation

Future Steps

- Expand patient cohort
- Improve model to enable fully automated segmentation
 - Train classification network on validation results to determine if heart is in view Ensemble model \bullet

- - Images without hearts were mostly head or abdominal scans
 - We can assume zero radiation dose if . heart is out of the field of view
- Merging image data with patient health data
- Exploring distributional characteristics of dose exposure
- Time to event analysis for cardiovascular diseases and overall survival

Acknowledgements

PERSIMUNE

CENTRE OF EXCELLENCE FOR PERSONALISED MEDICINE **OF INFECTIOUS COMPLICATIONS IN IMMUNE DEFICIENCY**

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 764644

References

[1] Niska, J. R., et al. "Radiation and the heart: systematic review of dosimetry and cardiac endpoints." Expert review of cardiovascular therapy 16.12 (2018): 931-950. [2] Bergom, C., et al. "Predicting Radiation-Induced Heart Disease and Survival—Is Location the Key?." JAMA oncology 7.2 (2021): 193-195.

[3] Smith, A. G., et al. "RootPainter3D: Interactive-machine-learning enables rapid and accurate contouring for radiotherapy." arXiv preprint arXiv:2106.11942