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Figure 1: Cut through view of different stages of the process. To the left the full superset of surfaces, the centre is the selected set of surfaces and the the right we have the
volumetric structure.

Introduction
We propose a method for generating multi-laminar structures from frame fields. Rather than relying on integrative approaches that find a parametrization based on the frame field, we find stream surfaces,
represented as point clouds, aligned with frame vectors, and we solve an optimization problem to find well-spaced collections of such stream surfaces.
In addition to stream surface tracing and selection, we provide a method for generating structures from stream surface collections. This method produces a volumetric solid from a signed distance field
associated with each surface and combines these to form the output structure for the collection. We demonstrate our methods on several frame fields produced by the homogenization approach for topology
optimization yielding single-scale structures from optimal multi-scale designs.

Homogenization - Our Input data
In the field of topology optimization, the homogeniza-
tion approach has been revived as an important alterna-
tive to the established, density-based methods. It can
represent the microstructural design at a much finer
length-scale than the computational grid.

Figure 2: Example of a rank-1 and rank-2 microstructure,
where the rank-2 structure have orthogonal
layers.

In a 3D problem with a single loading case the rank-
3 microstructure with orthogonal layers have been
shown to be the optimal solution Avellaneda 1987.
These rank-2 microstructures can be described by a
frame field and a local material thickness associated
with each direction of the frame.
The frame fields we work with are unsigned and un-
ordered direction fields, where the directions are or-
thogonal to each other. Figure 4 show an example
frame field in 3D separated into the 3 families. How-
ever, this separation is not possible in general due to
singularities.

Singularities
Singularities are always a challenge when they arise.
Singularities are primarily a problem when a surface
is constructed with the edge colliding with the singular
curve.

Figure 3: Zoom in of the center singularity of the
cylindrical field from Figure 4.

However, we work with a mechanically optimal solu-
tion. Meaning in 3D singularities show up when the
direction of material does not matter. This observation
essentially highlight the regions of local isotropy. So
isotropy can happen when all directions matter equally
(Solid regions), none matter (Void) and only a single
of the 3 directions matter (Plate). These 3 situations
mean our method are not affected by these singulari-
ties at all since surfaces are not constructed in void and
solid regions and plates will have no material asigned
to the 2 isotropic directions.

Figure 4: The 3 different directions separated into the 3 different families. Please note we have no
guarantee that this separation is possible.
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Figure 5: These renderings show our final results. (a) depicts the results for the Electrical Mast example
defined by Geoffroy-Donders et al. 2020. It is shown from 2 different angles and a cut open
through the top. (b) is a rendered version of a Michell cantilever where 3 layers have been
enforced. (c) and (d) depict the classical Michell cantilever, (c) is our results and (d) is the state
of the art by Groen et al. 2020.

Figure 6: Close up comparison of the Cantilever example. Right is the previous state of the art by Groen
et al. 2020, left is ours. Note the staircasing in the results of Groen et al. 2020.

Generating surfaces
Each surface is expanded from a single starting point
using ideas from Poisson Disk Sampling [Bridson
2007]. This sampling technique allow us to populate
the domain with points no closer to each-other than a
specified value. Point positions are estimated through
an iterative Runge-Kutta method started locally from
established points.
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Figure 7: Points are generated by two randomly sampled
values, the rotation φ of D around the surfaces
normal N and distance from the centre point p0.

Sub-selection
We setup a covering problem using a grid of probe
points. This covering problem is NP-hard, however,
a relaxation can reduce the size of the surface set sig-
nificantly. In order to compute the selection for each
frame direction, we assign an index to the probe points
based in which frame corresponds to the surface nor-
mal close by. The frames are unordered, but as it can
be seen in Figure 8 the total number of activated probe
points does not depend on the ordering.

Figure 8: Activation of probes in an ordered (left) and
unordered (right) frame field. Note, the number
of activated probe points is unaffected by the
ordering.

Results
In conclusion our method provide a efficient system
for extracting mechanical structures. Groen et al. 2020
have previously shown an integrative approach to com-
pute a similar result. Our method perform mechani-
cally on par with Groen et al. 2020 mechanically, how-
ever, we have achieved a 10x speedup.
The results in Figure 5 show the results of our system
on multiple datasets, and it inculdes a direct compar-
ison with Groen et al. 2020 ((c) and (d)). Figure 6
highlight that our method produce smooth structures,
where Groen et al. 2020 see staircasing.

References
Avellaneda, Marco (1987). “Optimal bounds and microgeometries for elastic two-phase composites”. In: SIAM Journal on Applied Mathematics 47.6, pp. 1216–1228.
Bridson, Robert (2007). “Fast poisson disk sampling in arbitrary dimensions”. In: Acm Siggraph 2007 Sketches, Siggraph’07, p. 22. DOI: 10.1145/1278780.1278807.
Geoffroy-Donders, Perle et al. (2020). “3-d topology optimization of modulated and oriented periodic microstructures by the homogenization method”. eng. In: Journal of Computational Physics 401, p. 108994. DOI: 10.1016/j.jcp.2019.108994.
Groen, Jeroen P. et al. (2020). “De-homogenization of optimal multi-scale 3D topologies”. eng. In: Computer Methods in Applied Mechanics and Engineering 364, p. 112979. DOI: 10.1016/j.cma.2020.112979.

mailto:tife@dtu.dk
https://arxiv.org/abs/2104.05550
https://doi.org/10.1145/1278780.1278807
https://doi.org/10.1016/j.jcp.2019.108994
https://doi.org/10.1016/j.cma.2020.112979

