
Geometric Deep Learning for 

3D Facial Shape Analysis            

--focus on target and bias 

Fig. 1: a) The convolution operation on a spiral; b) The proposed projection-wise disentanglement strategy; 

Introduction: 3D facial shape analysis was challenged by the high-dimensional complexity of the facial morphology.

Recently, geometric deep learning techniques have become state-of-the-art methods for dimensionality of 3D shapes. 

We thus apply these techniques to facial shape analysis, exploring facial changes

related to a target attribute (𝑡) but not being confounded by other biases (𝑠).
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Method: We applied the convolution strategy 

from SpiralNet++ [1], and proposed the 

projection-wise disentangling approach, which 

couples a vector direction with the target while 

being independent to biases (via 𝐿𝑐𝑜𝑟𝑟, Fig. 

1b). Here 𝐶𝑜𝑟𝑟(.  . ) is the Pearson correlation 
coefficient which ranges between [−1 1]

𝐿𝑟𝑒𝑐 𝐗; 𝐗
′  ห ห𝐗 − 𝐗′𝐿𝑐𝑜𝑟𝑟 𝐭 𝐬; 𝐳𝐩  𝐶𝑜𝑟𝑟 𝐳𝐩 𝐬 − 𝜂 𝐶𝑜𝑟𝑟 𝐳𝐩 𝐭  

Results:.

𝛉𝑒𝑛𝑐  𝛉𝑑𝑒𝑐  𝛉𝑝𝑒← 𝑎𝑟𝑔𝑚𝑖𝑛 𝐿𝑗𝑜 𝑛𝑡  𝐿𝑟𝑒𝑐 𝜆𝐿𝑐𝑜𝑟𝑟

A vector direction in the latent space can be represented by   [      . . .   n] as a linear 

combination of the basis vectors (Fig. 2). Let 𝐃 ×𝐧  [𝐳𝟏
  𝐳𝟐

  …  𝐳𝐧
 ] (𝑑 datapoints) be the latent 

representations of the input data. For each datapoint,   [      …   𝑛] is its latent 

representations, and  𝑝   *P/ ||P||  (          ⋯  𝑛 𝑛)/ ||P|| can be viewed as a scalar 

projection of  onto vector  (Fig. 2 ). When sampling along  ,  𝑝 changes and this change is 

correlated to 𝑡 while independent to 𝑠.
Fig. 2:   [      …  n] represents a vector in latent space (𝑛  3).  
 is the latent representation of a datapoint. 

Fig. 3: Left: input face;
Middle: reconstructed face;
Right: reconstruction error.

Reconstruction:
Disentanglement (Fig 4): We investigated the relation between gender, height and BMI.

When analyzing one of the attributes, the other two were considered as biases.

Vector T:  a vector direction capture facial changes related to a target attribute, without bias mitigation.

Vector S: a vector direction capture facial changes related to a bias.

Vector P: a vector direction searching by 𝐿𝑐𝑜𝑟𝑟 , capturing facial changes related to a target attribute, but 

being independent to the bias. P can be viewed as the projection of T onto the plane orthogonal with S
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Fig. 4: a) illustration of vector T, S and P; b) Disentanglement for BMI. 1st row: disentanglement along T; 2nd row: disentanglement along P.

(a)                                                                                                                 (b)

However, since BMI and height are positively correlated in our dataset, the similar heatmaps for the BMI and height 

disentanglement in T indicate that it captured common facial features for the two tasks, and thus failed to disentangle the 

confounding bias. In contrast, P learned a target-specific representation, showing a strong correlation to the target attribute and 

without being confounded by other (bias) attributes.

Features visualization:

Fig. 5 provides visualizations of the facial features by

computing difference heatmaps between the first 

and the last frame in Fig 4b. The vector T captured 

all features related to the target, whereas P captured 

the features that only related to the target and 

independent to biases. For gender, the result of P is 

similar to that of T because gender is nearly 

unbiased by height and BMI in the dataset. 
Fig. 5: Visualizations of facial features. Red and blue areas refer to inner and outer facial changes 

towards the geometric center of the 3D face, respectively.
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