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Ihttps://graphdeeplearning.github.io/project /spatial-convnets/
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Graph Neural Networks (GNNs): Overview

® Motivation

@® Spectral to Spatial graph convolutions
ChebyNet

© Graph neural networks
Neighbourhood aggregating GNNs
Relational GNNs

O Generalized Message Passing Algorithms

® Summary
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Let's start in known waters

Laplacian
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Laplacian on different domains means (almost) the same

® Laplacian: Second order differential operator
(Tells you how smoothly the function is changing in its domain)

In Euclidean space: Af =V - Vf
Generalized to Reimannian manifolds — Laplace-Beltrami operator

® When specified for graphs (discrete grids) — Graph Laplacian

Graph Laplacian

Consider graph G = (V, &, A) with vertex set V : |V| = N, & set of edges and
A € RVXN: adjacency matrix, the graph Laplcian is simply given as:

A=D-A (1)

D € RV*N is the degree matrix with D;; = i Ay
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Laplacian eigenfunctions form an orthonormal Fourier basis
The Symmetric Normalized Graph Laplacian can be factorized as:
L=Iy—DY2AD Y2 = dA07 (2)

where, ® = (¢o, #1...dn_1) € RNV are the orthogonal eigenfunctions forming
the Fourier basis, with corresponding eigenvalues in the diagonal matrix
A= diag(/\o, Al, ey AN—I)
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Figure from Geometric deep learning: Going beyond Euclidean data. Michael M. Bronstein, Joan Bruna, ‘
Yann LeCun, Arthur Szlam, Pierre Vandergheynst 2016
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Convolution on graphs in Fourier domain

Consider a signal operating on the nodes, x € RV and a filter go parameterized by
© € R", the graph convolution is given as:

go xx = (Pgo)(®'x) (3)

Recollect that: L = ®A®T and & x is the Fourier transform of x

Turns out that gg = A and not very useful

® Non-localized, non-parametric (all free parameters)

® Computationally expensive

So, use a polynomial parameterization for localized filters with:

go(N) = 3 0" 4)
k=0
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Approximating Convolution on graphs with truncated
Chebyshev polynomials

Recursive formulation for fast filtering:

ge(N) = Z O\ Z Ok Te(R) (5)
k=0 pary

with A = ;Z-A — Iy € [~1,1] and Chebyshev coefficients © € R¥
Incorporatlng the truncated approximation yields the popular spectral graph
convolution method: ChebyNet

go*x = (®go)(®x) Zokn (6)

with L = —L Iy
Note that the convolution is K-localized and only depends the Laplacian.

Chebyshev polynomial T(y) of order k is given by the recurrence:
Ti(y) =2yTi—1(y) — Ty—2(y) with To=1,Ty =y

Defferrard, Michaél, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. Advances in neural information processing systems 29 (2016): 3844-3852.
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Further approximation yields the class of neighbourhood
aggregating GNNs

With K =2, Anax = 2, the graph convolution operation becomes:

go * X = fox + 0;Lx (7)
= Oox + 01(L — In)x (8)
=0(Ily — D"Y2AD~Y/2)x (9)
go *x ~ O(D~1/2AD1/%x) (10)
with 6y = —0;.
More generally, for input X € RV*C and weight matrix ©@ € R¢*F:
H=D"Y2AD"'/?x0 (11)

Stacking multiple of these layers with non-linearities yields the class of node GNNs®!

5Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional
networks.” arXiv preprint arXiv:1609.02907 (2016).
Note: Chebyshev polynomial Ty (y) of order k is given by the recurrence: Ti(y) = 2yTk—1(y) — Tk—2(y) .
with To =1, Ty =y
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GNNs when seen from a node's point of view

For a node i € V with neighbours N; the GNN
operation in layer-m is given as:

W™ =Y gn(hTi0njeN;  (12)
J

with hgo) = x; and gn(+; ©) is an MLP
Aggregation of transformed neighbouring node
features

M-layered GNN provides information from
M-hops away!

A form of learnable message passing (more on
this shortly!)
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GNNs for Characterising Atomic Structure of
Mono-Metallic Nanoparticles

Consider the task of predicting the atomic structure of nanoparticles based on some
desired structure property.

® Treat the atomic structure as a graph
with atoms as nodes

® Using property-structure pairs
formulate a conditional generative
model

® Use GNNs in the encoder:

H = o(F(m=D(H"-D A 0,,_1))
(13)

with HO® = X and HM) = 7
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High level overview of the conditional generative model
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Results on structure prediction of nanoparticles based on

properties
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Relational GNNs

® Neighbourhood aggregation is good for predictions on nodes or graph level

® Explicit modeling of relations or edges in tasks such as link prediction

Node Embedding: hi.l) = gn(X;)

Node-to-Edge mapping: hEll)j) = gnze([h,(»l), hi.l)])
N;

Edge-to-Node mapping: h;z) = geZn(Z hﬁf,),)])

Node-to-Edge mapping: hgi) = g,,ZE([hfz),hg.z)])

where g(-) are MLPs.

® Node to edges

® Edges to node
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Rich classes of message passing algorithms exist for
inference on PGMs

e Kalman filter for Markov chains

® Sum-product algorithm for factor
graphs

® | oopy belief propagation for graphs
with cycles

® Mean field approximation for Markov
random fields

Can GNNs be interpreted as

generalizations of these
algorithms?
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Airway extraction as Graph Refinement task

Graph Refinement Model

f() . gin = g
Output subgraph G with € C &i,; A € {0,1}V*V
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Two approches to Graph Refinement

® Mean-Field Networks (MFNs)
® Graph Neural Networks (GNNs)

Node Features, X, .
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Probabilistic Graphical Model for MFN

® Binary random variable
sij € {0,1} with prob. «; € [0,1]
® For each node: s; = {s;}:j=1...N
® Global connectivity variable: S = [s;...sn]

® |nstances of S are N x N adjacency matrices

Posterior density of interest: p(S|X, Ai,)

In p(S|X, Ain) xIn p(S, X, Ain)

:Z¢i(sl Z ¢u slasj InZ,

ieEN (ij)EE
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Node and Pairwise Potentials for MFA

Node Potential: For each node i € V

di(si) = (5)

Pairwise Potential: For each edge,(/,j) € &

bij(siysj) = (6)

Parameters = [3,a, A\, n, V]
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Approximate posterior density with a simpler one

Mean-Field Factorisation: ¢(S) € Q

a(s) = [T T ass). (14)

i=1 j=1
Implication: Node connectivities are independent.
Variational Inference to approximate p(S|X, A;,)

P(SIX, Ain) ~ q(S) (15)
Minimize KL Divergence = Maximize Evidence Lower Bound (ELBO)

ELBO(q) = —KLD(q(S)||p(S|X, Ain)] +inz (16)
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Maximising ELBO wrt gj(s;;) yields MFA lterations

(t)
.‘ ;\’}%l 1—041(3){ Z Lﬁft)[(ﬂz—ﬁl)

MFA lterations g\ ’ JEN\L meney (1= )

)

(t)
Oéi’;ﬂ) _ (t+1 (s == 1) Ba ne/\;\l’m ﬂ‘jﬁ] + (//31 _ 50)} +alx;
- H%p—’m + (4(12? —2)A+ 20‘1(1? (nT|Xz‘ - Xj| + IIT(xixj))
Vk={1...N},{§Nk o . ﬂ 1
oc: Global connectivity prediction Al = o) = HTP_W

Note: MFA iterations resemble feed-forward operations in neural nets
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MFA as Mean-Field Networks

® T —iterations as a T —layered network
® Gradient descent to learn model parameters: L£(cx, A,)
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Increasing ELBO = Better approximation
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GNN based Graph Refinement

Graph refinement task: f(-) : Gin — G
GNN based encoder-decoder pair

® Encoder comprises stacks of GNNs

Learnable Message passing between nodes
® Joint training of encoder-decoder pair to learn useful embeddings

Simple decoder predicts graph connectivity
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GNN Model for Graph Refinement

Consider node j with neighbours A/},

Node Embedding:
N2E mapping:
E2N mapping:
N2E mapping:

Decoder:

h;
hiij
h
hiij

o

8n(x;) (8)
gnae([h}, hj]) (9)
ge2n(Y _h(ipl) VieN; (10)
gnoe([h7, h7]) (11)
O-(gdec(h%i,j))) (12)
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Summarising GNN Model

A : ;
Node Features, X .
HO=X H® HM=z
(&) @)

m
Graph Neural Network Layers Decoder

- Encoder
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Experiments

® Baseline: a) Region growing on probability images b) Bayesian smoothing
merged with region growing for evaluation c) 3D U-net
® Pretraining dataset used to tune hyperparameters

® FEight-fold cross validation
® Error measures:

o Average centerline distance: der = (drp + drn)/2
o drp = Specificity

o dfnv = Sensitivity

o Percentage of tree length (TL)

o False positive rate (FPR)
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Performance comparison

Table 1

Performance comparison of five methods: Region growing on probability images (Vox+RG), Bayesian smoothing merged with
Vox+RG (BS+RG), UNet, MFN and GNN models. Dice similarity, centerline distances (dp, dpy, derr), fraction of tree length
detected (TL) and false positive rate (FPR) are reported based on 8—fold cross validation. Significant improvements when
compared to other methods are shown in boldface. Additionally, we also report the running time to train each of the models
in a single fold. Note that the MFN and GNN models require additional preprocessing that is performed only once when

preparing the graphs..

Dice(%) dpp(mm) dpy(mm) dery (mm) TL(%) FPR(%) Time (m)
Vox+RG - 2.937 + 1.005 6.762 + 2.1042 4.847 + 2.527 73.2+£99 49+39 90
BS+RG - 2.827 + 1.266 4.601 + 2.002 3.714 + 1.896 73.6 £ 6.1 79 £ 6.1 105
UNet - 3.540 + 1.316 3.525 + 1.201 3.532 + 1.259 75.6 + 8.7 6.5+ 3.3 5700
MFN 86.5+ 25 3.608 + 1.360 3.116 + 0.632 3.362 + 1.297 745 £ 6.7 86 +54 60+35
GNN 848 £33 2216 +£ 0464  2.878 + 0.505 2.547 + 0.587 819+73 78446 60+12

dpp = Specificity

® dpp = Sensitivity

Average centerline distance: derr
Percentage of tree length (TL)

® False positive rate (FPR)
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Visualisation of extracted airways

Vox+RG

BS+RG

Legend: Reference (pink), True Positive (Yellow), False Negative (Black), False Positive (Blue)
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Generalization of message passing algorithms

Factor Graph Neural Network

Zhen Zhang!  Fan Wu®  Wee Sun Lee!
! Australian Tustitute for Machine Learning & The University of Adelaide, Australia
University of Iinois at Urbana-Champaign
* Scliool of Computing, National University of Singapore
/zhen. zhang026adelaide. odu.au| fanv6eillinois.edu| [LeewsGcomp.mus.edu. s

Abstract

Most of the siccessful deep neural network architectures are structured,
often consisting of clements like convolutional newral networks and gated
recurrent neural networks, Recently, graph neural networks (GNNs) have
been suceessfully applied to graph-structured data such as point clond and
moleula data, These netvorks ot only consider pairwize dependences,

they operate on a graph structure. We generalize the GNN into a
ctor graph el nework (FGNN) providing s smple sy 1o incorporaic
dependencies among multiple variables. We show that FGNN is able to
represent Max-Product belief propagation, an approximate inference method
on probabilistic graphical models, providing a theoretical on

Neural Message Passing for Quantum Chemistry

Justin Gilmer ! Samue S. Seioenholz Patrick F. Riley* Oriol Vinyals” George F. Dahl

Abstract
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the capabilities of FGNN and related GNNs. Experiments on synthetic and
real datasets demonstrate the potential of the proposed architecture.

ot hem
or reach the limits of the approach. In tis pa-
per we reformulte existing models ino a sn
e common framewark we cal Messge Pass

Fiaur 1A Nessage Passing Neur! Network prodcs qastum
propertis of an rganic el by i 3 cormpuaionlly
cxpensive DET cileulaion
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Summary

® Convolutions on graphs can be
approximated in spectral domain

® ChebyNet uses a polynomial of spectral
filter approximated with Chebyshev
polynomials

® First order approximation to ChebyNet
yields spatial graph convolutions

® Relational GNNs can be tied to
message passing algorithms

® Weighting nodes in a neighbourhood
differently yields attention-type models
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Thanks!

® Packages for Graph-based deep learning
® DGLE, Pytorch Geometric®, JGraph'®
® raghav@di.ku.dk

Carbontracker: Tracking and Predicting the Carbon Footprint of Training
Deep Learning Models

Lasse E. Wolff Anthony" ! Benjamin Kanding' ' Raghavendra Selvan'

pip install carbontracker

8https://docs.dgl.ai/en/latest/index.html
Shttps://pytorch-geometric.readthedocs.io/en/latest/
Onttps://github.com/deepmind/jraph
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