

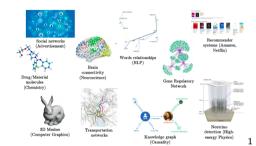
Graph Neural Networks: Somewhere between Spectral Graph Processing and Message Passing Algorithms
Summer School on Geometric Deep Learning

Raghavendra Selvan

Assistant Professor Dept. of Computer Science (ML Section) Dept. of Neuroscience (Kiehn Lab) University of Copenhagen

raghav@di.ku.dk https://raghavian.github.io **У**@raghavian

Motivation



- Geometric deep learning \equiv Non-Euclidean DL
- Heterogenous graph-structured data are non-Euclidean data
- Graph-based learning has taken off in the past 3-4 years
- Connections to other domains such as probabilistic graphical models, spectral theory

(From dimensions.ai)

¹https://graphdeeplearning.github.io/project/spatial-convnets/

Graph Neural Networks (GNNs): Overview

- Motivation
- Spectral to Spatial graph convolutions ChebyNet
- Graph neural networks Neighbourhood aggregating GNNs Relational GNNs
- **4** Generalized Message Passing Algorithms
- **6** Summary

Let's start in known waters

Laplacian

Laplacian on different domains means (almost) the same

- Laplacian: Second order differential operator (Tells you how smoothly the function is changing in its domain)
- In Euclidean space: $\Delta f = \nabla \cdot \nabla f$
- ullet Generalized to Reimannian manifolds o Laplace-Beltrami operator
- \bullet When specified for graphs (discrete grids) \to Graph Laplacian

Graph Laplacian

Consider graph $\mathcal{G}=(\mathcal{V},\mathcal{E},\mathbf{A})$ with vertex set $\mathcal{V}:|\mathcal{V}|=\mathit{N},\,\mathcal{E}$ set of edges and $\mathbf{A}\in\mathbb{R}^{\mathit{N}\times\mathit{N}}$: adjacency matrix, the graph Laplcian is simply given as:

$$\Delta = \mathbf{D} - \mathbf{A} \tag{1}$$

 $\mathbf{D} \in \mathbb{R}^{N imes N}$ is the degree matrix with $D_{ii} = \sum_{i} A_{ij}$

Laplacian eigenfunctions form an orthonormal Fourier basis

The Symmetric Normalized Graph Laplacian can be factorized as:

$$\mathbf{L} = \mathbf{I}_N - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2} = \mathbf{\Phi} \mathbf{\Lambda} \mathbf{\Phi}^T$$
 (2)

where, $\mathbf{\Phi} = (\phi_0, \phi_1 \dots \phi_{N-1}) \in \mathbb{R}^{N \times N}$ are the orthogonal eigenfunctions forming the Fourier basis, with corresponding eigenvalues in the diagonal matrix $\mathbf{\Lambda} = \operatorname{diag}(\lambda_0, \lambda_1, \dots, \lambda_{N-1})$

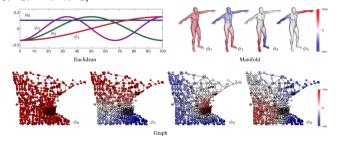


Figure from Geometric deep learning: Going beyond Euclidean data. Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, Pierre Vanderghevnst 2016

Convolution on graphs in Fourier domain

Consider a signal operating on the nodes, $\mathbf{x} \in \mathbb{R}^N$ and a filter g_{Θ} parameterized by $\Theta \in \mathbb{R}^N$, the graph convolution is given as:

$$g_{\Theta} \star \mathbf{x} = (\mathbf{\Phi} g_{\Theta})(\mathbf{\Phi}^T \mathbf{x}) \tag{3}$$

Recollect that: $\mathbf{L} = \mathbf{\Phi} \mathbf{\Lambda} \mathbf{\Phi}^T$ and $\mathbf{\Phi}^T \mathbf{x}$ is the Fourier transform of \mathbf{x}

Turns out that $g_\Theta = \mathbf{\Lambda}$ and not very useful

- Non-localized, non-parametric (all free parameters)
- Computationally expensive

So, use a polynomial parameterization for localized filters with:

$$g_{\Theta}(\mathbf{\Lambda}) = \sum_{k=0}^{K-1} \theta_k \mathbf{\Lambda}^k \tag{4}$$

Approximating Convolution on graphs with truncated Chebyshev polynomials

Recursive formulation for fast filtering:

$$g_{\Theta}(\mathbf{\Lambda}) = \sum_{k=0}^{K-1} \theta_k \mathbf{\Lambda}^k \approx \sum_{k=0}^{K-1} \theta_k T_k(\tilde{\mathbf{\Lambda}})$$
 (5)

with $\tilde{\mathbf{\Lambda}} = \frac{2}{\lambda_{\text{max}}} \mathbf{\Lambda} - \mathbf{I}_{\mathcal{N}} \in [-1,1]$ and Chebyshev coefficients $\Theta \in \mathbb{R}^K$ Incorporating the truncated approximation yields the popular spectral graph convolution method: **ChebyNet**

$$g_{\Theta} \star \mathbf{x} = (\mathbf{\Phi} g_{\Theta})(\mathbf{\Phi}^T \mathbf{x}) \approx \sum_{k=0}^{K-1} \theta_k T_k(\tilde{\mathbf{L}}) \mathbf{x}$$
 (6)

with $\tilde{\mathbf{L}} = \frac{2}{\lambda_{\max}} \mathbf{L} - \mathbf{I}_N$

Note that the convolution is K-localized and only depends the Laplacian.

Chebyshev polynomial $T_k(y)$ of order k is given by the recurrence:

$$T_k(y) = 2yT_{k-1}(y) - T_{k-2}(y)$$
 with $T_0 = 1, T_1 = y$

Defferrard, Michaël, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs with fast localized spectral filtering. Advances in neural information processing systems 29 (2016): 3844-3852.

Further approximation yields the class of neighbourhood aggregating GNNs

With K = 2, $\lambda_{max} = 2$, the graph convolution operation becomes:

$$g_{\Theta} \star \mathbf{x} \approx \theta_0 \mathbf{x} + \theta_1 \tilde{\mathbf{L}} \mathbf{x} \tag{7}$$

$$= \theta_0 \mathbf{x} + \theta_1 (\mathbf{L} - \mathbf{I}_N) \mathbf{x} \tag{8}$$

$$= \theta(\mathbf{I}_N - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}) \mathbf{x} \tag{9}$$

$$g_{\Theta} \star \mathbf{x} \approx \theta(\tilde{\mathbf{D}}^{-1/2}\tilde{\mathbf{A}}\tilde{\mathbf{D}}^{-1/2}\mathbf{x})$$
 (10)

with $\theta_0 = -\theta_1$.

More generally, for input $\mathbf{X} \in \mathbb{R}^{N \times C}$ and weight matrix $\mathbf{\Theta} \in \mathbb{R}^{C \times F}$:

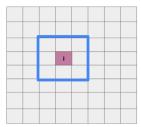
$$\mathbf{H} = \tilde{\mathbf{D}}^{-1/2} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-1/2} \mathbf{X} \mathbf{\Theta} \tag{11}$$

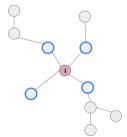
Stacking multiple of these layers with non-linearities yields the class of node GNNs⁵!

⁵Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016).

Note: Chebyshev polynomial $T_k(y)$ of order k is given by the recurrence: $T_k(y) = 2yT_{k-1}(y) - T_{k-2}(y)$ with $T_0 = 1$, $T_1 = y$

GNNs when seen from a node's point of view





• For a node $i \in \mathcal{V}$ with neighbours \mathcal{N}_i the GNN operation in layer-m is given as:

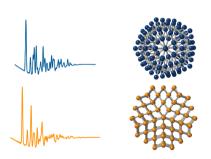
$$\mathbf{h}_{i}^{(m)} = \sum_{j} g_{m}(\mathbf{h}_{i,j}^{(m-1)}; \Theta_{m}) j \in \mathcal{N}_{i}$$
 (12)

with
$$\mathbf{h}_{i}^{(0)} = \mathbf{x}_{i}$$
 and $g_{m}(\cdot; \Theta_{m})$ is an MLP

- Aggregation of transformed neighbouring node features
- M-layered GNN provides information from M-hops away!
- A form of learnable message passing (more on this shortly!)

GNNs for Characterising Atomic Structure of Mono-Metallic Nanoparticles

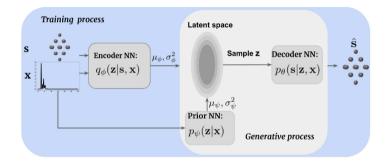
Consider the task of predicting the atomic structure of nanoparticles based on some desired structure property.



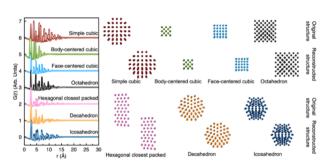
- Treat the atomic structure as a graph with atoms as nodes
- Using property-structure pairs formulate a conditional generative model
- Use GNNs in the encoder:

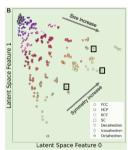
$$\mathbf{H}^{(m)} = \sigma(f^{(m-1)}(\mathbf{H}^{(m-1)}, \mathbf{A}; \Theta_{m-1}))$$
 (13) with $\mathbf{H}^{(0)} = \mathbf{X}$ and $\mathbf{H}^{(M)} = \mathbf{Z}$

High level overview of the conditional generative model



Results on structure prediction of nanoparticles based on properties





Relational GNNs

- Neighbourhood aggregation is good for predictions on nodes or graph level
- Explicit modeling of relations or edges in tasks such as link prediction

Node Embedding:
$$\mathbf{h}_{j}^{(1)} = g_{n}(\mathbf{x}_{j})$$

Node-to-Edge mapping:
$$\mathbf{h}_{(i,j)}^{(1)} = g_{n2e}([\mathbf{h}_i^{(1)}, \mathbf{h}_j^{(1)}])$$

Edge-to-Node mapping:
$$\mathbf{h}_{j}^{(2)} = g_{e2n}(\sum_{i}^{N_{j}} \mathbf{h}_{(i,j)}^{(1)})$$

Node-to-Edge mapping:
$$\mathbf{h}_{(i,j)}^{(2)} = g_{n2e}([\mathbf{h}_i^{(2)}, \mathbf{h}_j^{(2)}])$$

where $g(\cdot)$ are MLPs.

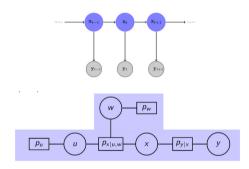
Two types of messages bearing similarities with belief propagation

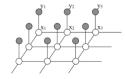
- Node to edges
- Edges to node

Rich classes of message passing algorithms exist for inference on PGMs

- Kalman filter for Markov chains
- Sum-product algorithm for factor graphs
- Loopy belief propagation for graphs with cycles
- Mean field approximation for Markov random fields

Can GNNs be interpreted as generalizations of these algorithms?

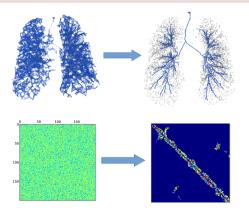




Airway extraction as Graph Refinement task

Graph Refinement Model

$$f(\cdot):\mathcal{G}_{\mathsf{in}}\mapsto\mathcal{G}$$
 Output subgraph \mathcal{G} with $\mathcal{E}\subset\mathcal{E}_{\mathit{in}};~\mathbf{A}\in\{0,1\}^{N\times N}$

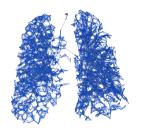


Two approches to Graph Refinement

- Mean-Field Networks (MFNs)
- Graph Neural Networks (GNNs)



Probabilistic Graphical Model for MFN



- Binary random variable $s_{ij} \in \{0,1\}$ with prob. $\alpha_{ij} \in [0,1]$
- For each node: $\mathbf{s}_i = \{s_{ij}\}: j = 1 \dots N$
- Global connectivity variable: $\mathbf{S} = [\mathbf{s}_1 \dots \mathbf{s}_N]$
- Instances of **S** are $N \times N$ adjacency matrices

Posterior density of interest: $p(S|X, A_{in})$

$$\begin{split} \ln p(\mathbf{S}|\mathbf{X}, \mathbf{A}_{\text{in}}) &\propto \ln p(\mathbf{S}, \mathbf{X}, \mathbf{A}_{\text{in}}) \\ &= \sum_{i \in \mathcal{N}} \phi_i(\mathbf{s}_i) + \sum_{(i,j) \in \mathcal{E}} \phi_{ij}(\mathbf{s}_i, \mathbf{s}_j) - \ln Z, \end{split}$$

Node and Pairwise Potentials for MFA

Node Potential: For each node $i \in \mathcal{V}$

$$\phi_i(\mathbf{s}_i) = \sum_{v=0}^{D} \beta_v \mathbb{I} \left[\sum_j s_{ij} = v \right] + \mathbf{a}^T \mathbf{x}_i \sum_j s_{ij},$$
 (5)

Pairwise Potential: For each edge, $(i,j) \in \mathcal{E}_{\mathsf{in}}$

$$\phi_{ij}(\mathbf{s}_i, \mathbf{s}_j) = \lambda (1 - 2|s_{ij} - s_{ji}|) + (2s_{ij}s_{ji} - 1) \left[\eta^T |\mathbf{x}_i - \mathbf{x}_j| + \nu^T (\mathbf{x}_i \mathbf{x}_j) \right].$$
 (6)

Parameters =
$$[\beta, \mathbf{a}, \lambda, \eta, \nu]$$

Approximate posterior density with a simpler one

Mean-Field Factorisation: $q(S) \in Q$

$$q(\mathbf{S}) = \prod_{i=1}^{N} \prod_{i=1}^{N} q_{ij}(s_{ij}), \tag{14}$$

Implication: Node connectivities are independent.

Variational Inference to approximate $p(S|X, A_{in})$

$$p(\mathbf{S}|\mathbf{X}, \mathbf{A}_{\mathsf{in}}) \approx q(\mathbf{S})$$
 (15)

 ${\sf Minimize}\ {\sf KL}\ {\sf Divergence} \equiv {\sf Maximize}\ {\sf Evidence}\ {\sf Lower}\ {\sf Bound}\ ({\sf ELBO})$

$$\mathsf{ELBO}(q) = -\mathsf{KLD}(q(\mathbf{S})||p(\mathbf{S}|\mathbf{X}, \mathbf{A}_{\mathsf{in}})] + \mathsf{In}\,Z \tag{16}$$

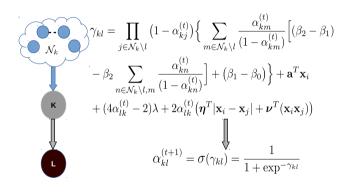
Maximising ELBO wrt $q_{ii}(s_{ii})$ yields MFA Iterations

MFA Iterations

$$egin{aligned} lpha_{kl}^{(t+1)} &= q_{kl}^{(t+1)}(s_{kl} == 1) \ &= rac{1}{1 + \exp^{-\gamma_{kl}}} \end{aligned}$$

 $\forall k = \{1 \dots N\}, l \in \mathcal{N}_k$

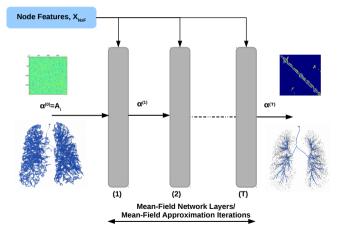
lpha: Global connectivity prediction



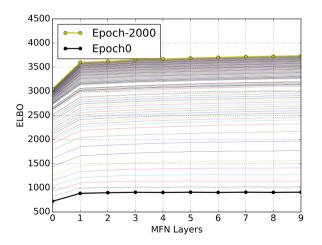
Note: MFA iterations resemble feed-forward operations in neural nets

MFA as Mean-Field Networks

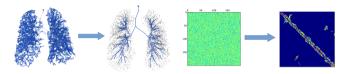
- T-iterations as a T-layered network
- ullet Gradient descent to learn model parameters: $\mathcal{L}(oldsymbol{lpha}, oldsymbol{A}_r)$



Increasing ELBO \implies Better approximation



GNN based Graph Refinement



- Graph refinement task: $f(\cdot): \mathcal{G}_{\mathsf{in}} \mapsto \mathcal{G}$
- GNN based encoder-decoder pair
- Encoder comprises stacks of GNNs
- Learnable Message passing between nodes
- Joint training of encoder-decoder pair to learn useful embeddings
- Simple decoder predicts graph connectivity

GNN Model for Graph Refinement

Consider node j with neighbours \mathcal{N}_j ,

Node Embedding:
$$\mathbf{h}_{j}^{1} = g_{n}(\mathbf{x}_{j})$$
 (8)

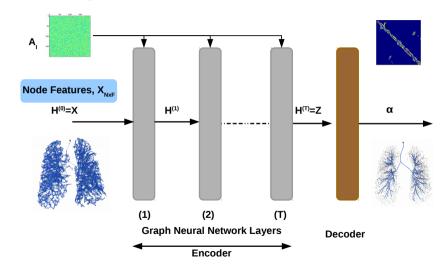
N2E mapping:
$$\mathbf{h}_{(i,j)}^1 = g_{n2e}([\mathbf{h}_i^1, \mathbf{h}_j^1])$$
 (9)

E2N mapping:
$$\mathbf{h}_{j}^{2} = g_{e2n}(\sum \mathbf{h}_{(i,j)}^{1}]) \ \forall i \in \mathcal{N}_{j}$$
 (10)

N2E mapping:
$$\mathbf{h}_{(i,j)}^2 = g_{n2e}([\mathbf{h}_i^2, \mathbf{h}_j^2])$$
 (11)

Decoder:
$$\alpha_{ii} = \sigma(g_{dec}(\mathbf{h}_{(i,i)}^2))$$
 (12)

Summarising GNN Model



Experiments

- Baseline: a) Region growing on probability images b) Bayesian smoothing merged with region growing for evaluation c) 3D U-net
- Pretraining dataset used to tune hyperparameters
- Eight-fold cross validation
- Error measures:
 - Average centerline distance: $d_{err} = (d_{FP} + d_{FN})/2$
 - o $d_{FP} \equiv Specificity$
 - o $d_{FN} \equiv Sensitivity$
 - Percentage of tree length (TL)
 - False positive rate (FPR)

Performance comparison

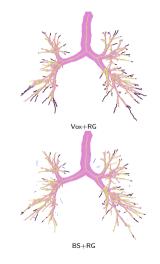
Table 1

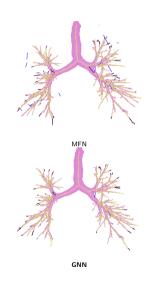
Performance comparison of five methods: Region growing on probability images (Vox+RG), Bayesian smoothing merged with Vox+RG (BS+RG), UNet, MFN and GNN models. Dice similarity, centerline distances (d_{FP} , d_{FN} , d_{err}), fraction of tree length detected (TL) and false positive rate (FPR) are reported based on 8–fold cross validation. Significant improvements when compared to other methods are shown in boldface. Additionally, we also report the running time to train each of the models in a single fold. Note that the MFN and GNN models require additional preprocessing that is performed only once when preparing the graphs.

	Dice(%)	$d_{FP}(mm)$	$d_{FN}(mm)$	d _{err} (mm)	TL(%)	FPR(%)	Time (m)
Vox+RG	-	2.937 ± 1.005	6.762 ± 2.1042	4.847 ± 2.527	73.2 ± 9.9	4.9 ± 3.9	90
BS+RG	-	2.827 ± 1.266	4.601 ± 2.002	3.714 ± 1.896	73.6 ± 6.1	7.9 ± 6.1	105
UNet	-	3.540 ± 1.316	3.525 ± 1.201	3.532 ± 1.259	75.6 ± 8.7	6.5 ± 3.3	5700
MFN	86.5 ± 2.5	3.608 ± 1.360	3.116 ± 0.632	3.362 ± 1.297	74.5 ± 6.7	8.6 ± 5.4	60 + 35
GNN	84.8 ± 3.3	2.216 ± 0.464	2.878 ± 0.505	2.547 ± 0.587	81.9 ± 7.3	7.8 ± 4.6	60 + 12

- d_{EP} ≡ Specificity
- d_{FN} ≡ Sensitivity
- Average centerline distance: derr
- Percentage of tree length (TL)
- False positive rate (FPR)

Visualisation of extracted airways





Generalization of message passing algorithms

Factor Graph Neural Network

Zhen Zhang¹ Fan Wu ² Wee Sun Lee³

¹ Australian Institute for Machine Learning & The University of Indexisty of Adelaide, Australia

² University of Illuios at Urbana-Chamaaign

3 School of Computing, National University of Singapore

zhen, zhang02@adelaide, edu, au fany6@111inois, edu leeya@comp.nus.edu.ag

Abstract

Most of the successful deep neural network architectures are structured, one consisting of columns the convolutional neural networks and pated of networking of columns the convolutional neural networks and pated been successfully applied to graph-structured data such as point cloud and machine data. These networks often only crossive parise dependencies, for the convolution of the convoluti

Neural Message Passing for Quantum Chemistry

Justin Gilmer 1 Samuel S. Schoenholz 1 Patrick F. Riley 2 Oriol Vinyals 3 George E. Dahl 1

Abstract

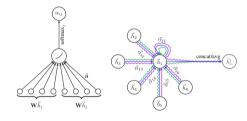
Supervised learning on melecules has incredible potential to be useful or chemistry, drug discovery, and materials science. Lackily, serve and promising and cloudy sylated formund activated. The control of the contro

 $\sim 10^{-2}$ seconds

Figure 1. A Message Passing Neural Network predicts quantum properties of an organic molecule by modeling a computationally expensive DFT calculation.

Summary

- Convolutions on graphs can be approximated in spectral domain
- ChebyNet uses a polynomial of spectral filter approximated with Chebyshev polynomials
- First order approximation to ChebyNet yields spatial graph convolutions
- Relational GNNs can be tied to message passing algorithms
- Weighting nodes in a neighbourhood differently yields attention-type models



Thanks!

- Packages for Graph-based deep learning
- DGL⁸, Pytorch Geometric⁹, JGraph¹⁰
- raghav@di.ku.dk

Carbontracker: Tracking and Predicting the Carbon Footprint of Training Deep Learning Models

Lasse F. Wolff Anthony* 1 Benjamin Kanding* 1 Raghavendra Selvan 1

pip install carbontracker

⁹https://pytorch-geometric.readthedocs.io/en/latest/

¹⁰https://github.com/deepmind/jraph

References

- Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G. The graph neural network model. IEEE Trans. Neural Networks. 20(1):61–80. 2009.
- Defferrard, M., Bresson, X., and Vandergheynst, P. Con-volutional neural networks on graphs with fast localized spectral filtering. In Advances in Neural Information Processing Systems (NIPS), 2016.
- Kipf, T. N. and Welling, M. Semi-supervised classifica- tion with graph convolutional networks. In International Conference on Learning Representations (ICLR), 2017.
- Monti, F., Boscaini, D., and Masci, J. Geometric deep learning on graphs and manifolds using mixture model CNNs. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
- Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. Graph attention networks. In International Conference on Learning Representations (ICLR), 2018.
- Selvan, R., Kipf, T., Welling, M., Juarez, A. G. U., Pedersen, J. H., Petersen, J., de Bruijne, M. (2020).
 Graph refinement based airway extraction using mean-field networks and graph neural networks. Medical Image Analysis, 64, 101751.
- Dwivedi, V. P., Joshi, C. K., Laurent, T., Bengio, Y., Bresson, X. (2020). Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982.

