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u n i v e r s i t y o f c o p e n h a g e n

Motivation

1

• Geometric deep learning ≡ Non-Euclidean DL
• Heterogenous graph-structured data are non-Euclidean data
• Graph-based learning has taken off in the past 3-4 years
• Connections to other domains such as probabilistic

graphical models, spectral theory
(From dimensions.ai)

1https://graphdeeplearning.github.io/project/spatial-convnets/
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u n i v e r s i t y o f c o p e n h a g e n

Graph Neural Networks (GNNs): Overview
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u n i v e r s i t y o f c o p e n h a g e n

Let’s start in known waters

Laplacian
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u n i v e r s i t y o f c o p e n h a g e n

Laplacian on different domains means (almost) the same

• Laplacian: Second order differential operator
(Tells you how smoothly the function is changing in its domain)

• In Euclidean space: ∆f = ∇ · ∇f
• Generalized to Reimannian manifolds → Laplace-Beltrami operator
• When specified for graphs (discrete grids) → Graph Laplacian

Graph Laplacian
Consider graph G = (V, E ,A) with vertex set V : |V| = N, E set of edges and
A ∈ RN×N : adjacency matrix, the graph Laplcian is simply given as:

∆ = D− A (1)

D ∈ RN×N is the degree matrix with Dii =
∑

j Aij
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u n i v e r s i t y o f c o p e n h a g e n

Laplacian eigenfunctions form an orthonormal Fourier basis
The Symmetric Normalized Graph Laplacian can be factorized as:

L = IN −D−1/2AD−1/2 = ΦΛΦT (2)

where, Φ = (φ0, φ1 . . . φN−1) ∈ RN×N are the orthogonal eigenfunctions forming
the Fourier basis, with corresponding eigenvalues in the diagonal matrix
Λ = diag(λ0, λ1, . . . , λN−1)

Figure from Geometric deep learning: Going beyond Euclidean data. Michael M. Bronstein, Joan Bruna,
Yann LeCun, Arthur Szlam, Pierre Vandergheynst 2016
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u n i v e r s i t y o f c o p e n h a g e n

Convolution on graphs in Fourier domain
Consider a signal operating on the nodes, x ∈ RN and a filter gΘ parameterized by
Θ ∈ RN , the graph convolution is given as:

gΘ ? x = (ΦgΘ)(ΦT x) (3)

Recollect that: L = ΦΛΦT and ΦT x is the Fourier transform of x

Turns out that gΘ = Λ and not very useful
• Non-localized, non-parametric (all free parameters)
• Computationally expensive
So, use a polynomial parameterization for localized filters with:

gΘ(Λ) =
K−1∑
k=0

θkΛk (4)
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u n i v e r s i t y o f c o p e n h a g e n

Approximating Convolution on graphs with truncated
Chebyshev polynomials
Recursive formulation for fast filtering:

gΘ(Λ) =
K−1∑
k=0

θkΛk ≈
K−1∑
k=0

θkTk(Λ̃) (5)

with Λ̃ = 2
λmax

Λ− IN ∈ [−1, 1] and Chebyshev coefficients Θ ∈ RK

Incorporating the truncated approximation yields the popular spectral graph
convolution method: ChebyNet

gΘ ? x = (ΦgΘ)(ΦT x) ≈
K−1∑
k=0

θkTk(L̃)x (6)

with L̃ = 2
λmax

L− IN
Note that the convolution is K-localized and only depends the Laplacian.

Chebyshev polynomial Tk (y) of order k is given by the recurrence:
Tk (y) = 2yTk−1(y) − Tk−2(y) with T0 = 1, T1 = y

Defferrard, Michaël, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. Advances in neural information processing systems 29 (2016): 3844-3852.
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u n i v e r s i t y o f c o p e n h a g e n

Further approximation yields the class of neighbourhood
aggregating GNNs
With K = 2, λmax = 2, the graph convolution operation becomes:

gΘ ? x ≈ θ0x + θ1L̃x (7)
= θ0x + θ1(L− IN)x (8)
= θ(IN −D−1/2AD−1/2)x (9)

gΘ ? x ≈ θ(D̃−1/2ÃD̃−1/2x) (10)

with θ0 = −θ1.
More generally, for input X ∈ RN×C and weight matrix Θ ∈ RC×F :

H = D̃−1/2ÃD̃−1/2XΘ (11)

Stacking multiple of these layers with non-linearities yields the class of node GNNs5!
5Kipf, Thomas N., and Max Welling. ”Semi-supervised classification with graph convolutional

networks.” arXiv preprint arXiv:1609.02907 (2016).
Note: Chebyshev polynomial Tk (y) of order k is given by the recurrence: Tk (y) = 2yTk−1(y)− Tk−2(y)

with T0 = 1,T1 = y
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u n i v e r s i t y o f c o p e n h a g e n

GNNs when seen from a node’s point of view

• For a node i ∈ V with neighbours Ni the GNN
operation in layer-m is given as:

h(m)
i =

∑
j

gm(h(m−1)
i,j ; Θm)j ∈ Ni (12)

with h(0)
i = xi and gm(·; Θm) is an MLP

• Aggregation of transformed neighbouring node
features

• M-layered GNN provides information from
M-hops away!

• A form of learnable message passing (more on
this shortly!)
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u n i v e r s i t y o f c o p e n h a g e n

GNNs for Characterising Atomic Structure of
Mono-Metallic Nanoparticles

Consider the task of predicting the atomic structure of nanoparticles based on some
desired structure property.

• Treat the atomic structure as a graph
with atoms as nodes

• Using property-structure pairs
formulate a conditional generative
model

• Use GNNs in the encoder:

H(m) = σ(f (m−1)(H(m−1),A; Θm−1))
(13)

with H(0) = X and H(M) = Z

Slide 11 — Raghavendra Selvan — Graph Neural Networks: Somewhere between Spectral Graph Processing and Message Passing Algorithms — August 18, 2021
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High level overview of the conditional generative model
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u n i v e r s i t y o f c o p e n h a g e n

Results on structure prediction of nanoparticles based on
properties
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u n i v e r s i t y o f c o p e n h a g e n

Relational GNNs
• Neighbourhood aggregation is good for predictions on nodes or graph level
• Explicit modeling of relations or edges in tasks such as link prediction

where g(·) are MLPs.

Two types of messages bearing similarities with belief propagation
• Node to edges
• Edges to node
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u n i v e r s i t y o f c o p e n h a g e n

Rich classes of message passing algorithms exist for
inference on PGMs

• Kalman filter for Markov chains
• Sum-product algorithm for factor

graphs
• Loopy belief propagation for graphs

with cycles
• Mean field approximation for Markov

random fields

Can GNNs be interpreted as
generalizations of these
algorithms?
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u n i v e r s i t y o f c o p e n h a g e n

Airway extraction as Graph Refinement task
Graph Refinement Model

f (·) : Gin 7→ G
Output subgraph G with E ⊂ Ein; A ∈ {0, 1}N×N
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u n i v e r s i t y o f c o p e n h a g e n

Two approches to Graph Refinement

• Mean-Field Networks (MFNs)
• Graph Neural Networks (GNNs)

  

Mean-Field Network Layers/
Mean-Field Approximation Iterations

(1) (2) (T)

α(0)=A
i
 α(1) α(T)

Node Features, X
NxF
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u n i v e r s i t y o f c o p e n h a g e n

Probabilistic Graphical Model for MFN

• Binary random variable
sij ∈ {0, 1} with prob. αij ∈ [0, 1]

• For each node: si = {sij} : j = 1 . . .N
• Global connectivity variable: S = [s1 . . . sN ]
• Instances of S are N × N adjacency matrices

Posterior density of interest: p(S|X, Ain)

ln p(S|X,Ain) ∝ ln p(S,X,Ain)

=
∑
i∈N

φi (si ) +
∑

(i,j)∈E

φij(si , sj)− ln Z ,
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u n i v e r s i t y o f c o p e n h a g e n

Node and Pairwise Potentials for MFA

Parameters = [β, a, λ,η, ν]
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u n i v e r s i t y o f c o p e n h a g e n

Approximate posterior density with a simpler one

Mean-Field Factorisation: q(S) ∈ Q

q(S) =
N∏

i=1

N∏
j=1

qij (sij ), (14)

Implication: Node connectivities are independent.

Variational Inference to approximate p(S|X, Ain)
p(S|X,Ain) ≈ q(S) (15)

Minimize KL Divergence ≡ Maximize Evidence Lower Bound (ELBO)

ELBO(q) = −KLD(q(S)||p(S|X,Ain)
]

+ ln Z (16)
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u n i v e r s i t y o f c o p e n h a g e n

Maximising ELBO wrt qij(sij) yields MFA Iterations

MFA Iterations

α(t+1)
kl = q(t+1)

kl (skl == 1)

= 1
1 + exp−γkl

∀ k = {1 . . .N}, l ∈ Nk
α: Global connectivity prediction

  

K

L

Note: MFA iterations resemble feed-forward operations in neural nets
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u n i v e r s i t y o f c o p e n h a g e n

MFA as Mean-Field Networks
• T−iterations as a T−layered network
• Gradient descent to learn model parameters: L(α,Ar )

  

Mean-Field Network Layers/
Mean-Field Approximation Iterations

(1) (2) (T)

α(0)=A
i
 α(1) α(T)

Node Features, X
NxF
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u n i v e r s i t y o f c o p e n h a g e n

Increasing ELBO =⇒ Better approximation
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u n i v e r s i t y o f c o p e n h a g e n

GNN based Graph Refinement

• Graph refinement task: f (·) : Gin 7→ G
• GNN based encoder-decoder pair
• Encoder comprises stacks of GNNs
• Learnable Message passing between nodes
• Joint training of encoder-decoder pair to learn useful embeddings
• Simple decoder predicts graph connectivity
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u n i v e r s i t y o f c o p e n h a g e n

GNN Model for Graph Refinement

Consider node j with neighbours Nj ,
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u n i v e r s i t y o f c o p e n h a g e n

Summarising GNN Model

  
Graph Neural Network Layers

Encoder

(1) (2) (T)

H(0)=X H(1) α

Node Features, X
NxF

Decoder

H(T)=Z

A
I
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u n i v e r s i t y o f c o p e n h a g e n

Experiments

• Baseline: a) Region growing on probability images b) Bayesian smoothing
merged with region growing for evaluation c) 3D U-net

• Pretraining dataset used to tune hyperparameters
• Eight-fold cross validation
• Error measures:

o Average centerline distance: derr = (dFP + dFN)/2
o dFP ≡ Specificity
o dFN ≡ Sensitivity
o Percentage of tree length (TL)
o False positive rate (FPR)
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u n i v e r s i t y o f c o p e n h a g e n

Performance comparison

• dFP ≡ Specificity
• dFN ≡ Sensitivity
• Average centerline distance: derr
• Percentage of tree length (TL)
• False positive rate (FPR)
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u n i v e r s i t y o f c o p e n h a g e n

Visualisation of extracted airways

Vox+RG

BS+RG

MFN

GNN

Legend: Reference (pink), True Positive (Yellow), False Negative (Black), False Positive (Blue)
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u n i v e r s i t y o f c o p e n h a g e n

Generalization of message passing algorithms
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u n i v e r s i t y o f c o p e n h a g e n

Summary

• Convolutions on graphs can be
approximated in spectral domain
• ChebyNet uses a polynomial of spectral

filter approximated with Chebyshev
polynomials
• First order approximation to ChebyNet

yields spatial graph convolutions
• Relational GNNs can be tied to

message passing algorithms
• Weighting nodes in a neighbourhood

differently yields attention-type models
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u n i v e r s i t y o f c o p e n h a g e n

Thanks!

• Packages for Graph-based deep learning
• DGL8, Pytorch Geometric9, JGraph10

• raghav@di.ku.dk

pip install carbontracker

8https://docs.dgl.ai/en/latest/index.html
9https://pytorch-geometric.readthedocs.io/en/latest/

10https://github.com/deepmind/jraph
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